Model Railroad System
222

Generated by Doxygen 1.9.1

1 Switch (Turnout) Abstract Types (Classes) 1
1.1 Source Files e e e e e e 1
1.1.1 SR4 as actuator and pointsense with a MRD2U for OS detection 1

1.1.2 SR4 as actuator and pointsense with a Circuits4Tracks Quad Occupancy Detector with a SR4
(USB connected /O board). e 1

1.1.3 Chubb SMINI board as actuator and pointsense with a Circuits4Tracks Quad OD as OS sensor . . 1

1.1.4 CTI Yardmaster as actuator and Train Brain as pointsense with a Circuits4Tracks Quad OD as OS

SENSOM . . . v v o e e e e e e e e e e e e 2

1.2 Common methods and functionality L 2
2 Class Index 3
21 Class List e 3
3 Class Documentation 5
3.1 CATSMINI_Switch Class Reference e e e 5
3.1.1 Detailed Description e e e 6
3.1.2 Constructor & Destructor Documentation oL 7
3.1.2.1 CATSMINI_Switch() e 7

3.1.3 Member Function Documentation 8
3.1.3.1 _entering() e 8

3132 exiting() 9

3.1.3.3 _gettruedirection() 9

3.1.3.4 _settruedirection() 9
3.1.3.5motor() ... 9
3.1.3.60CCUPIEAP() -« - ¢ v e e e e 10
3.13.7pointstate() 10
3.1.3.8propagate() 10
3.1.8.9validate() e e e e 11

3.1.4 Member Data Documentation e 11
3.1.4.1 _motorbits L e e e 11

3.1.4.2 _poiNtSENSE o L e 11

3143 _routes . . . e e 12
3.14.4i0soccupied . . . oL L L L 12

3.1.45n0de. . .. e 12

3.2 SR4_C4TSR4_Switch Class Reference e 12
3.2.1 Detailed Description L 14
3.2.2 Constructor & Destructor Documentation L 15
3.2218SR4_C4TSR4_Switch() 15

3.2.3 Member Function Documentation 16
3.23.1 _entering() e 16

Generated by Doxygen

3.23.2_exiting() 16

3.2.3.3 _gettruedirection() 16

3.2.3.4 _settruedirection() e e e e 16
3.23.5motor() L 17
3.2.3.60CCUPIEAP() -« -« v e e e e 17
3.23.7pointstate() e 17
3.23.8propagate() 18
3.239validate() 18

3.2.4 Member Data Documentation 18
3.24.1 _routes . . . oL e e 18
3.24.210soccupied L 19
3.24.3mMOtor e 19

3.24.4 08SENSOF i e e 19
3.24.5pointsense L e 19
3.24.68ENSEMAD i e e e 19

3.3 SR4_MRD2_Switch Class Reference e e 20
3.3.1 Detailed Description L 21
3.3.2 Constructor & Destructor Documentation L 22
3.3.21 SR4_MRD2_Switch() o e 22

3.3.3 Member Function Documentation L 23
3.33.1 _entering() . . - . .. 23
3.33.2_exiting() 24

3.3.3.3 _gettruedirection() 24

3.8.3.4 _settruedirection() 24
3.33.5motor() ... 24
3.3.3.60CCUPIEAP() -« - . i e e e e 25
3.833.7pointstate() 25
3.33.8propagate() 25
3.339validate() 26

3.3.4 Member Data Documentation L 26
3.3.4.1 _routes e e e 26
3.3.4.2forwardsignal L e 26
3.3.43motor 27
3.3.4.40SSENSOI L e e e 27
3.3.4.5p0intsense L e 27

3.3.4.6 reversedivergentsignal L 27
3.3.4.7reversemainsignal L 27

3.4 TB_Switch Class Reference e e 28
3.4.1 Detailed Description e e e 29

Generated by Doxygen

3.4.2 Constructor & Destructor Documentationo Lo 30
3421 TB Switch() o e 30

3.4.3 Member Function Documentation L 31
3.43.1 _entering() . . - . . o 31

3.43.2 _exiting() 31

3.4.3.3 _gettruedirection() 31

3.4.3.4 _settruedirection() 31
3.4.3.5motor() ... L e 32
3.4.3.60ccupiedp() - . . e e e e 32
3.43.7pointstate() 32
3.4.3.8propagate() 33

3439 validate() 33

3.4.4 Member Data Documentation L 33
3441 _pointsense e 33

3.4.42 routes L e e e e 33
3.4.43acela 34

3444 forwardsignal . .. L. L L 34
3.4.45i0s0ccupiedo e 34
3.4.4.6reversesignal L 34

Index 35

Generated by Doxygen

Chapter 1

Switch (Turnout) Abstract Types (Classes)

This folder contain a collection of Tcl code to implement switches (aka turnouts), using various actuator hardware.
Included is OS detection and point position detection, along with code to operate switch motors.

1.1 Source Files

There are several Tcl source files in this directory. Each contains a SNIT Abstract data type (also known as a Class).
This abstract data type encapsulates a single switch (turnout). All of these abstract data types a method named
occupiedp, which returns a true or false result indicating whether or not the OS is occupied. Also included are a
pointsense method which returns the state of the points and a mot or method which operates the switch machine
to move the points.

1.1.1 SR4 as actuator and pointsense with a MRD2U for OS detection

SR4_MRD2_Switch.tcl contains an abstract data type (SR4_MRD2_Switch) that implements switches using one half of
a Azatrax SR4 for the actuator and pointsense and a Azatrax MRD2U Sensor for OS detection.

1.1.2 SR4 as actuator and pointsense with a Circuits4Tracks Quad Occupancy Detector
with a SR4 (USB connected I/0 board).

SR4_C4TSR4_Switch.tcl contains an abstract data type (SR4_C4TSR4_Switch) that implements switches using one
half of a Azatrax SR4 for the actuator and 1/4 of a Circuits4Tracks Quad Occupancy Detector connected to another
Azatrax SR4 for OS detection.

1.1.3 Chubb SMINI board as actuator and pointsense with a Circuits4Tracks Quad OD as
OS sensor

C4TSMINI_Switch.tcl contains an abstract data type (C4TSMINI_Switch) that implements switches using a Chubb
SMINI board as actuator and pointsense with a Circuits4Tracks Quad OD as OS sensor.

Generated by Doxygen

2 Switch (Turnout) Abstract Types (Classes)

1.1.4 CTI Yardmaster as actuator and Train Brain as pointsense with a Circuits4Tracks
Quad OD as OS sensor

TB_Switch.tcl contains an abstract data type (TB_Switch) that implements switches using a CT| Yardmaster as actuator
and a Train Brain for pointsense with a Circuits4Tracks Quad OD as OS sensor.

1.2 Common methods and functionality

All three types have a common structure. The constructors take the form:

typename objectname [optional options]

Eg:

SR4_MRD2_Switch switchl -motorobj turnoutControll -motorhalf lower \
-pointsenseobj turnoutControll \
-pointsensehalf lower -plate SwitchPlatel \
—ossensorsn 0200001234

There are a trio of common options, -previousblock, -nextmainblock, and -nextdivergentblock which are the names of
the previous block in the forward direction and the name of the previous blocks in the reverse direction. Another trio
of common options, -forwardsignalobj, -reversemainsignalobj, and -reversedivergentsignalobj are the names of signal
objects. Also there is the option, -direction with sets the current operating direction for the block and can be forward or
reverse. For blocks that only support traffic in one direction, use only the -previousblock and -forwardsignalobj options.
The -direction defaults to forward. There are other object specific options that define how the sensor is accessed by the
block object.

There are six common methods, four public and two private (the private methods should not be used by external code).
The public methods are occupiedp, propagate, pointstate, and motor. The occupiedp method returns a true or false
(logical) value that indicates whether the switch is occupied or not. The pointstate method returns the state if the
points. The motor method activates the switch motor to move the points. The propagate method takes a signal aspect to
'‘propagate’ to the previous block. The occupiedp method is typically called from the occupied command script associated
with a piece of track work. The pointstate method is typically called from the state sense script associated with the
switch track work. And the motor method is assocated with the normal and reverse scripts for the switch's switch plate
on the CTC panel.

The two private methods, _entering and _exiting are used to implement special handling when entering or leaving a
block. Presently, the _entering method sets the signal aspect and propagates signal aspects down to previous blocks
and the _exiting method does nothing. These methods can be extended to add additional functionality, as needed.

Generated by Doxygen

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

C4TSMINI_Switch

Switch (turnout) operation using a Chubb SMINI board and a Circuits4Tracks Quad OD for OS de-

teCtion L e
SR4_C4TSR4_Switch

Switch (turnout) operationusing 1/2o0faSR4 L
SR4_MRD2_Switch

Switch (turnout) operation using 1/2o0faSR4
TB_Switch

Switch (turnout) operation using a CTl Train Brain and Yardmaster

Generated by Doxygen

Class Index

Generated by Doxygen

Chapter 3

Class Documentation

3.1 CA4TSMINI_Switch Class Reference

Switch (turnout) operation using a Chubb SMINI board and a Circuits4Tracks Quad OD for OS detection.

Public Member Functions

* C4TSMINI_Switch (name,...)

Constructor: initialize the switch object.
* occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block (OS) occupation.
* pointstate ()

The pointstate method returns normal if the points are aligned to the main route and reverse if the points are aligned to
the divergent route.

« motor (route)

The motor method sets the switch motor to align the points for the specificed route.
 propagate (aspect, from,...)

Method used to propagate distant signal states back down the line.

Static Public Member Functions

« static validate (object)
Type validating code Raises an error if object is not either the empty string or a SR4_C4TSR4_Switch type.

Protected Member Functions

+ _entering ()
Code to run when just entering the OS Sets the signal aspects and propagates signal state.
« _exiting ()

Code to run when about to exit the OS.

Generated by Doxygen

Class Documentation

Private Member Functions

+ _settruedirection (option, value)

A method to fake direction for frog facing switches.
+ _gettruedirection (option)

A method to fake direction for frog facing switches.

Private Attributes

* node

SMINI node object.
* isoccupied

Saved occupation state.

Static Private Attributes

« static _motorbits

Motor bit values.
« static _pointsense

Point sense bit values.
« static _routes

Route check validation object.

3.1.1 Detailed Description

Switch (turnout) operation using a Chubb SMINI board and a Circuits4Tracks Quad OD for OS detection.

Hr\iiéll GaPs Track Power Common
| G e et g %
| i Ge— :
i — el
RaiIfGaP _ o

+12V s

Track Power Hot

Outouts
M8
CircuitdTracks
Quad Detector SMINI Node
'gkl -

o X5
@xz

Inputs GND

\ +5v

Figure 3.1 Switch controlled by a Chubb SMINI board with a Circuits4Tracks OS detection

POOCOD

Above is a typical switch (turnout) using an Chubb SMINI board to control a Circuitron Tortoise Switch Machine and to
sense the point position and a Circuits4Track quad occupancy detector to sense occupation of the switch.

Generated by Doxygen

3.1 C4ATSMINI_Switch Class Reference 7

Typical usage:
Connect to the cmribus through a USB RS485 adapter at /dev/ttyUSBO
CmriSupport::CmriNode openport /dev/ttyUSBO

SMINI board at address 0

CmriSupport::CmriNode SMINIO -type SMINI -address 0

Switch 1 is controled by bits 0 and 1 of output port 0

itch 1 points are sensed by bits 0 and 1 of input port 0

Switch 1 OS is detected on bit 0 of input port 1

C4TSMINI_Switch switchl -nodeobj SMINIO -motorport 0 -motorbit 0 \
-pointsenseport 0 -pointsensebit 0 \

-plate SwitchPlatel \

-ossensorport 1 -osbit 0

Switch 2 is controled by bits 0 and 1 of output port 1

Switch 2 points are sensed by bits 2 and 3 of input port 0

Switch 2 0S is detected on bit 1 of input port 1

C4TSMINI_Switch switch2 -nodeobj SMINIO -motorport 1 -motorbit O \
-pointsenseport 0 -pointsensebit 2 \

-plate SwitchPlate2 \

—ossensorport 1 -osbit 1

R

For the track work elements use "switchN occupiedp" for the track work elements' occupied script and use "switchN
pointstate" for the track work elements' state script. For the switch plate use "switchN motor normal" for the normal
script and "switchN motor reverse" for the reverse script.

Then in the Main Loop, you would have:
hil {true} {

MainWindow ctcpanel invoke Switchl

MainWindow ctcpanel invoke Switch2

MainWindow ctcpanel invoke SwitchPlatel

MainWindow ctcpanel invoke SwitchPlate2

update; # Update display

}

Author

Robert Heller <heller@deepsoft.com>

Definition at line 57 of file C4ATSMINI_Switch.tcl.

3.1.2 Constructor & Destructor Documentation

3.1.2.1 CATSMINI_Switch()

C4TSMINI_Switch::C4TSMINI_Switch (
name ,

)
Constructor: initialize the switch object.

Create a low level sensor object and install it as a component. Install the switch's signals, motor, and point sense
objects.

Parameters

’ name ‘ Name of the switch object

Generated by Doxygen

8 Class Documentation

Parameters

Options:
+ -nodeobj Cmri node object
« -motorport Output port number for motor control.
» -motorbit First (of two) motor control bits.
 -pointsenseport Input port for point sense.
+ -pointsensebit First (of two) point sense bits.
« -ossensorport Input port for OS sense.
« -osbit This defines the input bit on the input port for OS sense.
« -direction The current direction of travel. Forward always means entering at the point end.

- -forwarddirection The logial forward direction. Set this to reverse for a frog facing switch. Default is
forward and it is readonly and can only be set during creation.

« -forwardsignalobj The signal object protecting the points. Presumed to be a two headed signal, with
the upper head relating to the main (straight) route and the lower head relating to the divergent route.
The upper head has three colors: red, yellow, and green. The lower head only two: red and green.

+ -reversemainsignalobj The signal object protecting the straight frog end. Presumed to be single
headed (with number plate).

« -reversedivergentsignalobj The signal object protecting the divergent frog end. Presumed to be
single headed (with number plate).

+ -previousblock The block connected to the point end.
 -nextmainblock The block connected to the straight frog end.
+ -nextdivergentblock The block connected to the divergent frog end.

+ -plate The name of the switch plate for this switch.

3.1.3 Member Function Documentation

3.1.3.1 _entering()

C4TSMINI_Switch::_entering () [protected]

Code to run when just entering the OS Sets the signal aspects and propagates signal state.

Generated by Doxygen

3.1 C4ATSMINI_Switch Class Reference

3.1.3.2 _exiting()

C4TSMINI_Switch::_exiting () [protected]

Code to run when about to exit the OS.

3.1.3.3 _gettruedirection()

C4TSMINI_Switch::_gettruedirection (

option) [private]
A method to fake direction for frog facing switches.

Parameters

‘ option ‘ This is always -direction.

Returns

Either forward or reverse.

3.1.3.4 _settruedirection()

C4TSMINI_Switch::_settruedirection (
option ,

value) [private]

A method to fake direction for frog facing switches.

Parameters

option | This is always -direction.

value Either forward or reverse.

3.1.3.5 motor()

C4TSMINI_Switch::motor (

route)

The motor method sets the switch motor to align the points for the specificed route.

Generated by Doxygen

10 Class Documentation

Parameters

route | The desired route. A value of normal means align the points to the main (straight) route and a value of
reverse means align the points to the divergent route.

3.1.3.6 occupiedp()

CATSMINI_Switch::occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block (OS) occupation.

Returns

Yes or no, indicating whether the OS is occupied.

3.1.3.7 pointstate()

C4TSMINI_Switch::pointstate ()

The pointstate method returns normal if the points are aligned to the main route and reverse if the points are aligned to
the divergent route.

If the state cannot be determined, a value of unknown is returned.

Returns

Normal or reverse, indicating the point state.

3.1.3.8 propagate()

C4TSMINI_Switch: :propagate (
aspect ,
from ,

)

Method used to propagate distant signal states back down the line.

Generated by Doxygen

3.1 C4ATSMINI_Switch Class Reference

11

Parameters

aspect | The signal aspect that is being propagated.

from The propagating block.

Options:

« -direction The direction of the propagation.

3.1.3.9 validate()

static C4TSMINI_Switch::validate (
object) [static]

Type validating code Raises an error if object is not either the empty string or a SR4_C4TSR4_Switch type.

Parameters

‘ object ‘ Some object.

3.1.4 Member Data Documentation

3.1.4.1 _motorbits

C4TSMINI_Switch::_motorbits [static], [private]
Motor bit values.

Definition at line 86 of file C4TSMINI_Switch.tcl.

3.1.4.2 _pointsense

C4TSMINI_Switch::_pointsense [static], [private]
Point sense bit values.

Definition at line 90 of file C4TSMINI_Switch.tcl.

Generated by Doxygen

12 Class Documentation

3.1.4.3 _routes

C4TSMINI_Switch::_routes [static], [privatel]
Route check validation object.

Definition at line 165 of file C4TSMINI_Switch.tcl.

3.1.4.4 isoccupied

C4TSMINI_Switch::isoccupied [private]
Saved occupation state.

Definition at line 82 of file C4TSMINI_Switch.tcl.

3.1.4.5 node

C4TSMINI_Switch::node [private]
SMINI node object.

Definition at line 78 of file C4TSMINI_Switch.tcl.

3.2 SR4_C4TSR4_Switch Class Reference

Switch (turnout) operation using 1/2 of a SR4.

Public Member Functions

+ SR4_C4TSR4_Switch (name,...)

Constructor: initialize the switch object.
+ occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block (OS) occupation.
* pointstate ()

The pointstate method returns normal if the points are aligned to the main route and reverse if the points are aligned to
the divergent route.

» motor (route)

The motor method sets the switch motor to align the points for the specificed route.
* propagate (aspect, from,...)

Method used to propagate distant signal states back down the line.

Generated by Doxygen

3.2 SR4_C4TSR4_Switch Class Reference 13

Static Public Member Functions

« static validate (object)
Type validating code Raises an error if object is not either the empty string or a SR4_C4TSR4_Switch type.

Protected Member Functions

» _entering ()
Code to run when just entering the OS Sets the signal aspects and propagates signal state.
+ _exiting ()

Code to run when about to exit the OS.

Private Member Functions

» _settruedirection (option, value)

A method to fake direction for frog facing switches.
+ _gettruedirection (option)

A method to fake direction for frog facing switches.

Private Attributes

* motor

Motor device (SR4 outputs)
* pointsense

Point sense device (SR4 inputs)
* 0ssensor

SR4 object.
* isoccupied

Saved occupation state.

Static Private Attributes

« static sensemap

Sensor bit mapping to sensor functions.
 static _routes

Route check validation object.

Generated by Doxygen

14 Class Documentation

3.2.1 Detailed Description

Switch (turnout) operation using 1/2 of a SR4.

Rail Gaps

Track Power Common
—
e |

Y
s e

RaiLfGap - Rail Gap
Track Power Hot
circuitdTracks
© GND Quad Detector 1O oci2
rc
sl 0C12 Bl AT to 01
+12v o1 4 m— T1 02
%5 GF—
02 %2 € e Q2 SR4 s
L. SR4 % Q3 o
04 Olr4 oc3s
oc3a 12 11 IC

Figure 3.2 Switch controlled by a SR4 with a Circuits4Tracks OS detection using a second SR4

Above is a typical switch (turnout) using an Azatrax SR4 to control a Circuitron Tortoise Switch Machine and to sense
the point position and a Circuits4Track quad occupancy detector and a second SR4 to sense occupation of the switch.

Typical usage:

SR4 turnoutControll \

-this [Azatrax_OpenDevice 0400001234 $::Azatrax_idSR4Product]

SR4 quadsensel \

-this [Azatrax_OpenDevice 0400001235 $::Azatrax_idSR4Product]

Disable inputs controlling outputs.

turnoutControll OutputRelayInputControl 0 0 0 O

quadsensel OutputRelayInputControl 0 0 0 O

Switch 1 is controlled and sensed by the lower 1/2 of turnoutControll
SR4_C4TSR4_Switch switchl -motorobj turnoutControll -motorhalf lower \
-pointsenseobj turnoutControll \

-pointsensehalf lower -plate SwitchPlatel \

-ossensorob]j quadsensel -bit 0

Switch2 is controlled and sensed by the upper 1/2 of turnoutControll
SR4_C4TSR4_Switch switch2 -motorobj turnoutControll -motorhalf upper \
-pointsenseobj turnoutControll \

—-pointsensehalf upper -plate SwitchPlate2 \

—-ossensorob]j quadsensel -bit 1

For the track work elements use "switchN occupiedp” for the track work elements' occupied script and use "switchN
pointstate" for the track work elements' state script. For the switch plate use "switchN motor normal” for the normal
script and "switchN motor reverse" for the reverse script.

Then in the Main Loop, you would have:

1 {true} {
MainWindow ctcpanel invoke Switchl
MainWindow ctcpanel invoke Switch2
MainWindow ctcpanel invoke SwitchPlatel
MainWindow ctcpanel invoke SwitchPlate2
update; # Update display
}

Author

Robert Heller <heller@deepsoft.com>

Definition at line 57 of file SR4_C4TSR4_Switch.tcl.

Generated by Doxygen

3.2 SR4_C4TSR4_Switch Class Reference

15

3.2.2 Constructor & Destructor Documentation

3.2.2.1 SR4_CATSR4_Switch()

SR4_CATSR4_Switch::SR4_C4TSR4_Switch (

name ,

)

Constructor: initialize the switch object.

Create a low level sensor object and install it as a component. Install the switch's signals, motor, and point sense

objects.

Parameters

name

Name of the switch object

Options:

-motorobj Object (SR4) that controls the motor.

-motorhalf Which half: lower means Q1 and Q2, upper means Q3 and Q4.
-pointsenseobj Object (SR4) that senses the point state.

-pointsensehalf Which half: lower means 1 and 12, upper means I3 and 14.
-ossensorobj Object (SR4) that senses occupation (via the C4T)

-bit This defines the input bit on the SR4 for this block as an integer from 0 to 3, inclusive. This option
is read-only and can only be set at creation time. The default is 0.

-direction The current direction of travel. Forward always means entering at the point end.

-forwarddirection The logial forward direction. Set this to reverse for a frog facing switch. Default is
forward and it is readonly and can only be set during creation.

-forwardsignalobj The signal object protecting the points. Presumed to be a two headed signal, with
the upper head relating to the main (straight) route and the lower head relating to the divergent route.
The upper head has three colors: red, yellow, and green. The lower head only two: red and green.

-reversemainsignalobj The signal object protecting the straight frog end. Presumed to be single
headed (with number plate).

-reversedivergentsignalobj The signal object protecting the divergent frog end. Presumed to be
single headed (with number plate).

-previousblock The block connected to the point end.
-nextmainblock The block connected to the straight frog end.
-nextdivergentblock The block connected to the divergent frog end.

-plate The name of the switch plate for this switch.

Generated by Doxygen

16

Class Documentation

3.2.3 Member Function Documentation

3.2.3.1 _entering()

SR4_CA4TSR4_Switch::_entering () [protected]

Code to run when just entering the OS Sets the signal aspects and propagates signal state.

3.23.2 _exiting()

SR4_CA4TSR4_Switch::_exiting () [protected]

Code to run when about to exit the OS.

3.2.3.3 _gettruedirection()

SR4_CA4TSR4_Switch::_gettruedirection (

option) [private]
A method to fake direction for frog facing switches.

Parameters

‘ option ‘ This is always -direction.

Returns

Either forward or reverse.

3.2.3.4 _settruedirection()

SR4_C4TSR4_Switch::_settruedirection (
option ,

value) [private]

A method to fake direction for frog facing switches.

Generated by Doxygen

3.2 SR4_C4TSR4_Switch Class Reference 17

Parameters

option | This is always -direction.

value Either forward or reverse.

3.2.3.5 motor()

SR4_CA4TSR4_Switch::motor (

route)

The motor method sets the switch motor to align the points for the specificed route.

Parameters

route | The desired route. A value of normal means align the points to the main (straight) route and a value of
reverse means align the points to the divergent route.

3.2.3.6 occupiedp()

SR4_C4TSR4_Switch::occupiedp ()
The occupiedp method returns yes or no (true or false) indicating block (OS) occupation.

Returns

Yes or no, indicating whether the OS is occupied.

3.2.3.7 pointstate()

SR4_CA4TSR4_Switch::pointstate ()

The pointstate method returns normal if the points are aligned to the main route and reverse if the points are aligned to
the divergent route.

If the state cannot be determined, a value of unknown is returned.

Returns

Normal or reverse, indicating the point state.

Generated by Doxygen

18 Class Documentation

3.2.3.8 propagate()

SR4_CA4TSR4_Switch: :propagate (
aspect ,
from ,

)

Method used to propagate distant signal states back down the line.

Parameters

aspect | The signal aspect that is being propagated.

from The propagating block.

Options:

« -direction The direction of the propagation.

3.2.3.9 validate()

static SR4_C4TSR4_Switch::validate (
object) [static]

Type validating code Raises an error if object is not either the empty string or a SR4_C4TSR4_Switch type.

Parameters

‘ object ‘ Some object.

3.2.4 Member Data Documentation

3.2.4.1 _routes

SR4_CA4TSR4_Switch::_routes [static], [private]
Route check validation object.

Definition at line 169 of file SR4_C4TSR4_Switch.tcl.

Generated by Doxygen

3.2 SR4_C4TSR4_Switch Class Reference

19

3.2.4.2 isoccupied

SR4_CA4TSR4_Switch::isoccupied [private]

Saved occupation state.

Definition at line 89 of file SR4_C4TSR4_Switch.tcl.

3.2.4.3 motor

SR4_C4TSR4_Switch::motor [private]

Motor device (SR4 outputs)

Definition at line 77 of file SR4_C4TSR4_Switch.tcl.

3.2.4.4 ossensor

SR4_CA4TSR4_Switch::ossensor [private]

SR4 object.

Definition at line 85 of file SR4_C4TSR4_Switch.tcl.

3.2.4.5 pointsense

SR4_CA4TSR4_Switch::pointsense [private]
Point sense device (SR4 inputs)

Definition at line 81 of file SR4_C4TSR4_Switch.tcl.

3.2.4.6 sensemap

SR4_C4TSR4_Switch::sensemap [static], [private]

Sensor bit mapping to sensor functions.

Definition at line 93 of file SR4_C4TSR4_Switch.tcl.

Generated by Doxygen

20 Class Documentation

3.3 SR4_MRD2_Switch Class Reference

Switch (turnout) operation using 1/2 of a SR4.

Public Member Functions

+ SR4_MRD2_Switch (name,...)

Constructor: initialize the switch object.
+ occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block (OS) occupation.
* pointstate ()

The pointstate method returns normal if the points are aligned to the main route and reverse if the points are aligned to
the divergent route.

» motor (route)

The motor method sets the switch motor to align the points for the specificed route.
» propagate (aspect, from,...)

Method used to propagate distant signal states back down the line.

Static Public Member Functions

« static validate (object)
Type validating code Raises an error if object is not either the empty string or a SR4_MRDZ2_Switch type.

Protected Member Functions

» _entering ()

Code to run when just entering the OS Sets the signal aspects and propagates signal state.
» _exiting ()

Code to run when about to exit the OS.

Private Member Functions

+ _settruedirection (option, value)

A method to fake direction for frog facing switches.
+ _gettruedirection (option)

A method to fake direction for frog facing switches.

Generated by Doxygen

3.3 SR4_MRD2_Switch Class Reference

21

Private Attributes

* motor

Motor device (SR4 outputs)
* pointsense

Point sense device (SR4 inputs)
* 0ssensor

Occupency sensor (MRD2)
« forwardsignal

Signal at the points.
* reversemainsignal

Signal at the straight frog end.
* reversedivergentsignal

Signal at the divergent frog end.

Static Private Attributes

« static _routes

Route check validation object.

3.3.1 Detailed Description

Switch (turnout) operation using 1/2 of a SR4.

+12v

sM1

T GND

oCc12
[e38
Q2
.. SR4
Q4

oc34 12 11 IC

Figure 3.3 Switch controlled by a SR4 with MRD2 OS Detection

—C Sense?2

OSensel

MRD2

Above is a typical switch (turnout) using an Azatrax SR4 to control a Circuitron Tortoise Switch Machine and to sense
the point position and an Azatrax MRD2 to sense occupation of the switch. (A high resolution PDF and a Xtrkcad layout

file are included.)

Typical usage:
SR4 turnoutControll \

—this [Azatrax_OpenDevice 0400001234 $::Azatrax_idSR4Product]

Generated by Doxygen

22 Class Documentation

Disable inputs controlling outputs.
turnoutControll OutputRelayInputControl 0 0 0 O
Switch 1 is controlled and sensed by the lower 1/2 of turnoutControll

SR4_MRD2_Switch switchl -motorobj turnoutControll -motorhalf lower \
-pointsenseobj turnoutControll \

-pointsensehalf lower -plate SwitchPlatel \

-ossensorsn 0200001234

Switch2 is controlled and sensed by the upper 1/2 of turnoutControll

SR4_MRD2_Switch switch2 -motorobj turnoutControll -motorhalf upper \
-pointsenseobj turnoutControll \

-pointsensehalf upper -plate SwitchPlate2 \

-ossensorsn 0200001235

For the track work elements use "switchN occupiedp" for the track work elements' occupied script and use "switchN
pointstate" for the track work elements' state script. For the switch plate use "switchN motor normal” for the normal
script and "switchN motor reverse" for the reverse script.

Then in the Main Loop, you would have:
e {true} {

MainWindow ctcpanel invoke Switchl

MainWindow ctcpanel invoke Switch2

MainWindow ctcpanel invoke SwitchPlatel

MainWindow ctcpanel invoke SwitchPlate2

update; # Update display

}

Author

Robert Heller <heller@deepsoft.com>

Definition at line 53 of file SR4_MRD2_Switch.tcl.

3.3.2 Constructor & Destructor Documentation

3.3.2.1 SR4_MRD2_Switch()

SR4_MRD2_Switch::SR4_MRD2_Switch (
name ,

)
Constructor: initialize the switch object.

Create a low level sensor object and install it as a component. Install the switch's signals, motor, and point sense
objects.

Parameters

’ name ‘ Name of the switch object

Generated by Doxygen

3.3 SR4_MRD2_Switch Class Reference 23

Parameters

Options:

-motorobj Object (SR4) that controls the motor.

-motorhalf Which half: lower means Q1 and Q2, upper means Q3 and Q4.
-pointsenseobj Object (SR4) that senses the point state.

-pointsensehalf Which half: lower means 1 and 12, upper means 13 and 14.
-ossensorsn Serial number of the MRD2 that is sensing OS.

-diverttimeout Timeout, in seconds to allow for a train to clear the turnout when going on a divergent
route.

-direction The current direction of travel. Forward always means entering at the point end.

-forwarddirection The logial forward direction. Set this to reverse for a frog facing switch. Default is
forward and it is readonly and can only be set during creation.

-forwardsignalobj The signal object protecting the points. Presumed to be a two headed signal, with
the upper head relating to the main (straight) route and the lower head relating to the divergent route.
The upper head has three colors: red, yellow, and green. The lower head only two: red and green.

-reversemainsignalobj The signal object protecting the straight frog end. Presumed to be single
headed (with number plate).

-reversedivergentsignalobj The signal object protecting the divergent frog end. Presumed to be
single headed (with number plate).

-previousblock The block connected to the point end.
-nextmainblock The block connected to the straight frog end.
-nextdivergentblock The block connected to the divergent frog end.

-plate The name of the switch plate for this switch.

3.3.3 Member Function Documentation

3.3.3.1 _entering()

SR4_MRD2_Switch::_entering () [protected]

Code to run when just entering the OS Sets the signal aspects and propagates signal state.

Generated by Doxygen

24

Class Documentation

3.3.3.2 _exiting()

SR4_MRD2_Switch::_exiting () [protected]

Code to run when about to exit the OS.

3.3.3.3 _gettruedirection()

SR4_MRD2_Switch::_gettruedirection (

option) [private]

A method to fake direction for frog facing switches.

Parameters

‘ option ‘ This is always -direction.

Returns

Either forward or reverse.

3.3.3.4 _settruedirection()

SR4_MRD2_Switch::_settruedirection (
option ,

value) [private]

A method to fake direction for frog facing switches.

Parameters

option | This is always -direction.

value Either forward or reverse.

3.3.3.5 motor()

SR4_MRD2_Switch: :motor (

route)

The motor method sets the switch motor to align the points for the specificed route.

Generated by Doxygen

3.3 SR4_MRD2_Switch Class Reference 25

Parameters

route | The desired route. A value of normal means align the points to the main (straight) route and a value of
reverse means align the points to the divergent route.

3.3.3.6 occupiedp()

SR4_MRD2_Switch::occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block (OS) occupation.

Returns

Yes or no, indicating whether the OS is occupied.

3.3.3.7 pointstate()

SR4_MRD2_Switch::pointstate ()

The pointstate method returns normal if the points are aligned to the main route and reverse if the points are aligned to
the divergent route.

If the state cannot be determined, a value of unknown is returned.

Returns

Normal or reverse, indicating the point state.

3.3.3.8 propagate()

SR4_MRD2_Switch: :propagate (
aspect ,
from ,

)

Method used to propagate distant signal states back down the line.

Generated by Doxygen

26

Class Documentation

Parameters

aspect | The signal aspect that is being propagated.

from The propagating block.

Options:

« -direction The direction of the propagation.

3.3.3.9 validate()

static SR4_MRD2_Switch::validate (
object) [static]

Type validating code Raises an error if object is not either the empty string or a SR4_MRD2_Switch type.

Parameters

‘ object ‘ Some object.

3.3.4 Member Data Documentation

3.3.4.1 _routes

SR4_MRD2_Switch::_routes [static], [private]
Route check validation object.

Definition at line 169 of file SR4_MRD2_Switch.tcl.

3.3.4.2 forwardsignal

SR4_MRD2_Switch::forwardsignal [private]
Signal at the points.

Definition at line 85 of file SR4_MRD2_Switch.tcl.

Generated by Doxygen

3.3 SR4_MRD2_Switch Class Reference

27

3.3.4.3 motor

SR4_MRD2_Switch: :motor [private]
Motor device (SR4 outputs)

Definition at line 73 of file SR4_MRD2_Switch.tcl.

3.3.4.4 ossensor

SR4_MRD2_Switch::ossensor [private]
Occupency sensor (MRD2)

Definition at line 81 of file SR4_MRD2_Switch.tcl.

3.3.4.5 pointsense

SR4_MRD2_Switch::pointsense [private]
Point sense device (SR4 inputs)

Definition at line 77 of file SR4_MRD2_Switch.tcl.

3.3.4.6 reversedivergentsignal

SR4_MRD2_Switch::reversedivergentsignal [private]
Signal at the divergent frog end.

Definition at line 93 of file SR4_MRD2_Switch.tcl.

3.3.4.7 reversemainsignal

SR4_MRD2_Switch::reversemainsignal [private]
Signal at the straight frog end.

Definition at line 89 of file SR4_MRD2_Switch.tcl.

Generated by Doxygen

28 Class Documentation

3.4 TB_Switch Class Reference

Switch (turnout) operation using a CTI Train Brain and Yardmaster.

Public Member Functions

+ TB_Switch (name,...)

Constructor: initialize the block object.
+ occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block occupation.
* pointstate ()

The pointstate method returns normal if the points are aligned to the main route and reverse if the points are aligned to
the divergent route.

» motor (route)

The motor method sets the switch motor to align the points for the specificed route.
 propagate (aspect, from,...)

Method used to propagate distant signal states back down the line.

Static Public Member Functions

« static validate (object)

Type validating code Raises an error if object is not either the empty string or a TB_Switch type.

Protected Member Functions

» _entering ()

Code to run when just entering the OS Sets the signal aspects and propagates signal state.
» _exiting ()

Code to run when about to exit the OS.

Private Member Functions

» _settruedirection (option, value)

A method to fake direction for frog facing switches.
+ _gettruedirection (option)

A method to fake direction for frog facing switches.

Private Attributes

« acela

Acela object.
« forwardsignal

Signal object (typically a three color, one head block signal.
* reversesignal

Signal object (typically a three color, one head block signal.
* isoccupied

Saved occupation state.

Generated by Doxygen

3.4 TB_Switch Class Reference

29

Static Private Attributes

» static _pointsense

Point sense bit values.
 static _routes

Route check validation object.

3.4.1 Detailed Description

Switch (turnout) operation using a CTl Train Brain and Yardmaster.

Rail Gaps

Track Power Common

e B Eamn's §
ML == N o
i
. L .
RalIfGap Rail Gap
Track Power Hot
Yardmasteg
1 CircuitdTracks

Quad Detector

Bkl

Train Brain
(or Warchman
Sentry)

(A)

(R)

(RA)

(common)

Figure 3.4 Switch controlled by CTI's Yardmaster and Train Brain

Above is a typical switch (turnout) using a CTI Yardmaster to control a Circuitron Tortoise Switch Machine and a CTI
Train Brain to sense the point position and a Circuits4Track quad occupancy detector to sense occupation of the switch.

Typical usage:

Connect to the CTI network via a CTI Acela at

ctiacela::CTIAcela acela /dev/ttyACMO

Switch is controled by bits 0 and 1 of the Yardmaster
with bits 0 (occupation), 1 and 2 (point position).

/dev/ttyACMO

and sensed

TB_Switch switchl -acelaobj acela -motoraddress 0 -osaddress 0 \

-pointsense 1 -plate SwitchPlatel

Switch 2 is contr d by bits 2 and 3 of the Yardmaster
with bits 3 (occupation), 4 and 5 (point position)

and se

TB_Switch switch2 -acelaobj acela -motoraddress 2 -osaddress 3 \

-pointsense 4 -plate SwitchPlate2

For the track work elements use "switchN occupiedp” for the track work elements' occupied script and use "switchN
pointstate" for the track work elements' state script. For the switch plate use "switchN motor normal” for the normal
script and "switchN motor reverse" for the reverse script.

Then in the Main Loop, you would have:
while {true} {

MainWindow ctcpanel invoke Switchl
MainWindow ctcpanel invoke Switch2
MainWindow ctcpanel invoke SwitchPlatel
MainWindow ctcpanel invoke SwitchPlate2
update; # Update display

}

Author

Robert Heller <heller@deepsoft.com>

Definition at line 49 of file TB_Switch.tcl.

Generated by Doxygen

30

Class Documentation

3.4.2 Constructor & Destructor Documentation

3.4.2.1 TB_Switch()

TB_Switch::TB_Switch (

name ,

)

Constructor: initialize the block object.

Install an CTIAcela object as a component created elsewhere). Install the blocks signal (created elsewhere).

Parameters

name

Name of the block object

Options:

-acelaobj This is the CTIAcela object. This option is read-only and must be set at creation time.

-motoraddress The address of the motor control bits (two successive bits). This is an integer from 0
to 65535 inclusive. This option is read-only and can only be set at creation time. The default is 0.

-osaddress The address of the sensor bit for this block. This is an integer from 0 to 65535 inclusive.
This option is read-only and can only be set at creation time. The default is 0.

-pointsense The address of the sensor bits for the point state sense (two successive bits). This is an
integer from 0 to 65535 inclusive. This option is read-only and can only be set at creation time. The
default is 0.

-direction The current direction of travel. Forward always means entering at the point end.

-forwarddirection The logial forward direction. Set this to reverse for a frog facing switch. Default is
forward and it is readonly and can only be set during creation.

-forwardsignalobj The signal object protecting the points. Presumed to be a two headed signal, with
the upper head relating to the main (straight) route and the lower head relating to the divergent route.
The upper head has three colors: red, yellow, and green. The lower head only two: red and green.

-reversemainsignalobj The signal object protecting the straight frog end. Presumed to be single
headed (with number plate).

-reversedivergentsignalobj The signal object protecting the divergent frog end. Presumed to be
single headed (with number plate).

-previousblock The block connected to the point end.
-nextmainblock The block connected to the straight frog end.
-nextdivergentblock The block connected to the divergent frog end.

-plate The name of the switch plate for this switch.

Generated by Doxygen

3.4 TB_Switch Class Reference

3.4.3 Member Function Documentation

3.4.3.1 _entering()

TB_Switch::_entering () [protected]

Code to run when just entering the OS Sets the signal aspects and propagates signal state.

3.4.3.2 _exiting()

TB_Switch::_exiting () [protected]

Code to run when about to exit the OS.

3.4.3.3 _gettruedirection()

TB_Switch::_gettruedirection (

option) [private]
A method to fake direction for frog facing switches.

Parameters

‘ option ‘ This is always -direction.

Returns

Either forward or reverse.

3.4.3.4 _settruedirection()

TB_Switch::_settruedirection (
option ,
value) [private]

Generated by Doxygen

32 Class Documentation

A method to fake direction for frog facing switches.

Parameters

option | This is always -direction.

value Either forward or reverse.

3.4.3.5 motor()

TB_Switch: :motor (

route)

The motor method sets the switch motor to align the points for the specificed route.

Parameters

route | The desired route. A value of normal means align the points to the main (straight) route and a value of
reverse means align the points to the divergent route.

3.4.3.6 occupiedp()

TB_Switch::occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block occupation.

3.4.3.7 pointstate()

TB_Switch::pointstate ()

The pointstate method returns normal if the points are aligned to the main route and reverse if the points are aligned to
the divergent route.

If the state cannot be determined, a value of unknown is returned.

Returns

Normal or reverse, indicating the point state.

Generated by Doxygen

3.4 TB_Switch Class Reference

3.4.3.8 propagate()

TB_Switch: :propagate (
aspect ,
from ,

)

Method used to propagate distant signal states back down the line.

Parameters

aspect | The signal aspect that is being propagated.
from The propagating block.

Options:

« -direction The direction of the propagation.

3.4.3.9 validate()

static TB_Switch::validate (
object) [static]

Type validating code Raises an error if object is not either the empty string or a TB_Switch type.

3.4.4 Member Data Documentation

3.4.41 _pointsense

TB_Switch::_pointsense [static], [private]
Point sense bit values.

Definition at line 149 of file TB_Switch.tcl.

3.44.2 _routes

TB_Switch::_routes [static], [private]
Route check validation object.

Definition at line 161 of file TB_Switch.tcl.

Generated by Doxygen

34

Class Documentation

3.4.4.3 acela

TB_Switch::acela [private]
Acela object.

Definition at line 73 of file TB_Switch.tcl.

3.4.4.4 forwardsignal

TB_Switch::forwardsignal [private]

Signal object (typically a three color, one head block signal.

Definition at line 77 of file TB_Switch.tcl.

3.4.4.5 isoccupied

TB_Switch::isoccupied [private]
Saved occupation state.

Definition at line 85 of file TB_Switch.tcl.

3.4.4.6 reversesignal

TB_Switch::reversesignal [private]

Signal object (typically a three color, one head block signal.

Definition at line 81 of file TB_Switch.tcl.

Generated by Doxygen

Index

_entering
CATSMINI_Switch, 8
SR4_C4TSR4_Switch, 16
SR4_MRD2_Switch, 23
TB_Switch, 31

_exiting
C4TSMINI_Switch, 8
SR4_C4TSR4_Switch, 16
SR4_MRD2_Switch, 23
TB_Switch, 31

_gettruedirection
CATSMINI_Switch, 9
SR4 CA4TSR4_Switch, 16
SR4_MRD2_Switch, 24
TB_Switch, 31

__motorbits
C4TSMINI_Switch, 11

_pointsense
C4TSMINI_Switch, 11
TB_Switch, 33

_routes
C4TSMINI_Switch, 11
SR4_C4TSR4_Switch, 18
SR4_MRD2_Switch, 26
TB_Switch, 33

_settruedirection
CA4ATSMINI_Switch, 9
SR4_C4TSR4_Switch, 16
SR4_MRD2_Switch, 24
TB_Switch, 31

acela
TB_Switch, 33

C4TSMINI_Switch, 5
_entering, 8
_exiting, 8
_gettruedirection, 9
_motorbits, 11
_pointsense, 11
_routes, 11
_settruedirection, 9
C4ATSMINI_Switch, 7
isoccupied, 12
motor, 9
node, 12

occupiedp, 10
pointstate, 10
propagate, 10
validate, 11

forwardsignal
SR4_MRD2_Switch, 26
TB_Switch, 34

isoccupied
C4TSMINI_Switch, 12
SR4_C4TSR4_Switch, 18
TB_Switch, 34

motor
C4TSMINI_Switch, 9
SR4_C4TSR4_Switch, 17, 19
SR4_MRD2_Switch, 24, 26
TB_Switch, 32

node
C4TSMINI_Switch, 12

occupiedp
C4TSMINI_Switch, 10
SR4_C4TSR4_Switch, 17
SR4_MRD2_Switch, 25
TB_Switch, 32

ossensor
SR4_C4TSR4_Switch, 19
SR4_MRD2_Switch, 27

pointsense
SR4_C4TSR4_Switch, 19
SR4_MRD2_Switch, 27

pointstate
C4TSMINI_Switch, 10
SR4_C4TSR4_Switch, 17
SR4_MRD2_Switch, 25
TB_Switch, 32

propagate
C4TSMINI_Switch, 10
SR4_C4TSR4_Switch, 17
SR4_MRD2_Switch, 25
TB_Switch, 32

reversedivergentsignal

Generated by Doxygen

36 INDEX

SR4_MRD2_Switch, 27 propagate, 32
reversemainsignal reversesignal, 34

SR4_MRD2_Switch, 27 TB_Switch, 30
reversesignal validate, 33

TB_Switch, 34

validate

sensemap C4ATSMINI_Switch, 11

SR4_C4TSR4_Switch, 19 SR4_C4TSR4_Switch, 18
SR4_C4TSR4_Switch, 12 SR4_MRD2_Switch, 26

_entering, 16 TB_Switch, 33

_exiting, 16

_gettruedirection, 16

_routes, 18

_settruedirection, 16
isoccupied, 18
motor, 17, 19
occupiedp, 17
ossensor, 19
pointsense, 19
pointstate, 17
propagate, 17
sensemap, 19
SR4_C4TSR4_Switch, 15
validate, 18
SR4_MRD2_Switch, 20
_entering, 23
_exiting, 23
_gettruedirection, 24
_routes, 26
_settruedirection, 24
forwardsignal, 26
motor, 24, 26
occupiedp, 25
ossensor, 27
pointsense, 27
pointstate, 25
propagate, 25
reversedivergentsignal, 27
reversemainsignal, 27
SR4_MRD2_Switch, 22
validate, 26

TB_Switch, 28
_entering, 31
_exiting, 31
_gettruedirection, 31
_pointsense, 33
_routes, 33
_settruedirection, 31
acela, 33
forwardsignal, 34
isoccupied, 34
motor, 32
occupiedp, 32
pointstate, 32

Generated by Doxygen

	1 Switch (Turnout) Abstract Types (Classes)
	1.1 Source Files
	1.1.1 SR4 as actuator and pointsense with a MRD2U for OS detection
	1.1.2 SR4 as actuator and pointsense with a Circuits4Tracks Quad Occupancy Detector with a SR4 (USB connected I/O board).
	1.1.3 Chubb SMINI board as actuator and pointsense with a Circuits4Tracks Quad OD as OS sensor
	1.1.4 CTI Yardmaster as actuator and Train Brain as pointsense with a Circuits4Tracks Quad OD as OS sensor

	1.2 Common methods and functionality

	2 Class Index
	2.1 Class List

	3 Class Documentation
	3.1 C4TSMINI_Switch Class Reference
	3.1.1 Detailed Description
	3.1.2 Constructor & Destructor Documentation
	3.1.2.1 C4TSMINI_Switch()

	3.1.3 Member Function Documentation
	3.1.3.1 _entering()
	3.1.3.2 _exiting()
	3.1.3.3 _gettruedirection()
	3.1.3.4 _settruedirection()
	3.1.3.5 motor()
	3.1.3.6 occupiedp()
	3.1.3.7 pointstate()
	3.1.3.8 propagate()
	3.1.3.9 validate()

	3.1.4 Member Data Documentation
	3.1.4.1 _motorbits
	3.1.4.2 _pointsense
	3.1.4.3 _routes
	3.1.4.4 isoccupied
	3.1.4.5 node

	3.2 SR4_C4TSR4_Switch Class Reference
	3.2.1 Detailed Description
	3.2.2 Constructor & Destructor Documentation
	3.2.2.1 SR4_C4TSR4_Switch()

	3.2.3 Member Function Documentation
	3.2.3.1 _entering()
	3.2.3.2 _exiting()
	3.2.3.3 _gettruedirection()
	3.2.3.4 _settruedirection()
	3.2.3.5 motor()
	3.2.3.6 occupiedp()
	3.2.3.7 pointstate()
	3.2.3.8 propagate()
	3.2.3.9 validate()

	3.2.4 Member Data Documentation
	3.2.4.1 _routes
	3.2.4.2 isoccupied
	3.2.4.3 motor
	3.2.4.4 ossensor
	3.2.4.5 pointsense
	3.2.4.6 sensemap

	3.3 SR4_MRD2_Switch Class Reference
	3.3.1 Detailed Description
	3.3.2 Constructor & Destructor Documentation
	3.3.2.1 SR4_MRD2_Switch()

	3.3.3 Member Function Documentation
	3.3.3.1 _entering()
	3.3.3.2 _exiting()
	3.3.3.3 _gettruedirection()
	3.3.3.4 _settruedirection()
	3.3.3.5 motor()
	3.3.3.6 occupiedp()
	3.3.3.7 pointstate()
	3.3.3.8 propagate()
	3.3.3.9 validate()

	3.3.4 Member Data Documentation
	3.3.4.1 _routes
	3.3.4.2 forwardsignal
	3.3.4.3 motor
	3.3.4.4 ossensor
	3.3.4.5 pointsense
	3.3.4.6 reversedivergentsignal
	3.3.4.7 reversemainsignal

	3.4 TB_Switch Class Reference
	3.4.1 Detailed Description
	3.4.2 Constructor & Destructor Documentation
	3.4.2.1 TB_Switch()

	3.4.3 Member Function Documentation
	3.4.3.1 _entering()
	3.4.3.2 _exiting()
	3.4.3.3 _gettruedirection()
	3.4.3.4 _settruedirection()
	3.4.3.5 motor()
	3.4.3.6 occupiedp()
	3.4.3.7 pointstate()
	3.4.3.8 propagate()
	3.4.3.9 validate()

	3.4.4 Member Data Documentation
	3.4.4.1 _pointsense
	3.4.4.2 _routes
	3.4.4.3 acela
	3.4.4.4 forwardsignal
	3.4.4.5 isoccupied
	3.4.4.6 reversesignal

	Index

