Model Railroad System
222

Generated by Doxygen 1.9.1

1 Block Abstract Types (Classes) 1
1.1 Source Files o o 1
1.1.1 MRD2U Sensor (USB connected optical sensor) 1

1.1.2 Circuits4Tracks Quad Occupancy Detector with a SR4 (USB connected I/O board) 1

1.1.3 Circuits4Tracks Quad Occupancy Detector connected to a C/MRI SMINI board 2

1.1.4 Circuits4Tracks Quad Occupancy Detector connected to a CTl Train Brain 2

1.2 Common methods and functionality L 2
2 Class Index 3
21 Class List e 3
3 Class Documentation 5
3.1 CATSMINI_Block Class Reference e 5
3.1.1 Detailed Description e e e 6
3.1.2 Constructor & Destructor Documentation L 8
3.1.2.1 CATSMINIL_BIocK() o o 9

3.1.3 Member Function Documentation 9
3.1.3.1 _entering() 9

3132 _exiting() e 10
3.1.330ccupiedp() - .. e e e 10

3134 propagate() e 10
3.1.85validate() e e e e 10

3.1.4 Member Data Documentation 10
3.1.4.1 forwardsignal L 11
3.1.4.20s0ccupied . . . oL L L e 11

3.1.43n0de. . .. e 11
3.1.4.4reversesignal L L 11

3.2 C4ATSR4 Block Class Reference e 11
3.2.1 Detailed Description e e e 13
3.2.2 Constructor & Destructor Documentation L 15
3.22.1 CATSR4A_BIOCK() . . « . o o o 16

3.2.3 Member Function Documentation 16
3.23.1_entering() e 16
3.23.2_exiting() e 17
3.2.3.30CCUpiedpP() -« - . i e e e e e 17

3284 propagate() e 17

3235 validate() e 17

3.2.4 Member Data Documentation L 17
3.2.4.1 forwardsignal L e 18
3.2.4.210s0ccupied L e 18

Generated by Doxygen

3.2.4.3reversesignal L 18
3.24.48eNSEMAP e e e e e e 18
3.24.58ENS0r e 18
3.3C4TTB Block Class Reference e e e s e e e 19
3.3.1 Detailed Description e e e 20
3.3.2 Constructor & Destructor Documentation L 22
3.3.2.1 CATTB_BIOCK() . . .« o o o o 23

3.3.3 Member Function Documentation 23
3.3.3.1 _entering() e 23

3.833.2 _exiting() e 24
3.3.83o0ccupiedp() - e 24

3334 propagate() 24
3.83.5validate() 24

3.3.4 Member Data Documentation L 24
3341 acela e 25
3.3.4.2forwardsignal L L 25
3.3.4.3i0soccupiedo e 25
3.3.4.4reversesignal . . . L. 25

3.4 MRD2_Block Class Reference e 25
3.4.1 Detailed Description e 26
3.4.2 Constructor & Destructor Documentation L 28
3.4.21 MRD2_BIOCK() . .+« o o e 29

3.4.3 Member Function Documentation L 29
3.4.3.1 _entering() . . - . . L 29

3.43.2 _exiting() 30
3.4.3.30CCUPIEAP() -« - . i e e e e 30
3.43.4propagate() e 30
3.435validate() 30

3.4.4 Member Data Documentation 30
3.4.4.1 forwardsignal L L L 31
3.4.42reversesignal . .. L L L e 31
3.4.438€NS0OT. L e e 31

Index 33

Generated by Doxygen

Chapter 1

Block Abstract Types (Classes)

This folder contains a collection of Tcl code to implement block occupancy detection, using various methods. At the very
least, block detection results in signal aspect updates. Code for managing signals is in in the Signals folder.

There are two main ways to detect trains: using optical sensors or using current sensors. Optical sensors generally
work via reflection (bouncing a light beam off the bottom of the train), although an across-the-tracks type is possible too.
Current sensors work by sensing a current flow when a locomotive, lighted passenger car, or a freight car with resistors
installed on its wheelsets passes onto an electrically isolated section of track. In any case, the sensor is connected to
the computer somehow, either via USB or via a direct or indirect 1/0 bit or port.

1.1 Source Files

There are several Tcl source files in this directory. Each contains a SNIT Abstract data type (also known as a
Class). This abstract data type encapsulates a single block. All of these abstract data types include a method named
occupiedp, which returns a true or false result indicating whether or not the block is occupied. The constructor for
these types include options or arguments that define the 1/0 device(s) that connect to whatever sensors are being used
to detect block occupancy.

1.1.1 MRD2U Sensor (USB connected optical sensor)

MRD2_Block.tcl contains an abstract data type (MRD2_BIlock) that implements blocks using one Azatrax MRD2U Sen-
sor for each block.

1.1.2 Circuits4Tracks Quad Occupancy Detector with a SR4 (USB connected I/O board)

C4TSR4_Block.tcl contains an abstract data type (C4TSR4_Block) that implements blocks using Circuits4 Tracks Quad
Occupancy Detectors connected to Azatrax SR4 modules using SSRs. One Circuits4Tracks Quad Occupancy Detector
and one SR4 will handle 4 blocks.

Generated by Doxygen

2 Block Abstract Types (Classes)

1.1.3 Circuits4Tracks Quad Occupancy Detector connected to a C/MRI SMINI board

C4TSMINI_Block.tcl contains an abstract data type (C4TSMINI_Block) that implements blocks using Circuits4Tracks
Quad Occupancy Detectors connected to input pins of a Bruce Chubb C/MRI Super Mini (SMINI) board. A Bruce
Chubb C/MRI Super Mini (SMINI) board has enough inputs to handle a number of Circuits4Tracks Quad Occupancy
Detectors.

1.1.4 Circuits4Tracks Quad Occupancy Detector connected to a CTI Train Brain

C4TTB_Block.tcl contains an abstract data type (C4TTB_Block) that implements blocks using Circuits4Tracks Quad
Occupancy Detectors connected to the sensor inputs of a CTI Train Brain, Watchman, or Sentry board.Circuits4 Tracks
Quad Occupancy Detector connected to a

1.2 Common methods and functionality

All three types have a common structure. The constructors take the form:

typename objectname [optional options]

Eg:
MRD2_Block block2 -previousblock blockl -sensorsn 020001234 \
—forwardsignalobj signal2

There are a pair of common options, -previousblock and —nextblock, which are the names of the previous
block in the forward direction and the name of the previous block in the reverse direction. Another pair of common
options, ~-forwardsignalobj and —~reversesignalobj, are the names of signal objects. Also there is the
option, —~direction with sets the current operating direction for the block and can be forward or reverse.
For blocks that only support traffic in one direction, use only the ~-previousblock and ~forwardsignalobj
options. The —direction defaults to forward. There are other object specific options that define how the sensor
is accessed by the block object.

There are four common methods, two public and two private (the private methods should not be used by external code).
The public methods are occupiedp and propagate. The occupiedp method returns a true or false (logical)
value that indicates whether the block is occupied or not. The propagate method takes a signal aspect to '‘propagate’
to the previous block. The occupiedp method is typically called from the occupied command script associated with a
piece of track work.

The two private methods, _enteringand _exiting are used to implement special handling when entering or leav-
ing a block. Presently, the _entering method sets the signal aspect and propagates signal aspects down to previous
blocks and the _exiting method does nothing. These methods can be extended to add additional functionality, as
needed.

Generated by Doxygen

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

C4TSMINI_Block

Block occupation detection using Circuits4 Tracks Quad Occupancy Detectors and Azatrax SR4s . . 5
C4TSR4_Block

Block occupation detection using Circuits4Tracks Quad Occupancy Detectors and Azatrax SR4s . . 11
C4ATTB_Block

Block occupation detection using Circuits4 Tracks Quad Occupancy Detector and a CTl Train Brain . 19
MRD2_Block

Block occupation detection using Azatrax MRD2Uso 25

Generated by Doxygen

Class Index

Generated by Doxygen

Chapter 3

Class Documentation

3.1 CA4TSMINI_Block Class Reference

Block occupation detection using Circuits4 Tracks Quad Occupancy Detectors and Azatrax SR4s.

Public Member Functions

+ C4ATSMINI_Block (name,...)

Constructor: initialize the block object.
* occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block occupation.
 propagate (aspect, from,...)

Method used to propagate distant signal states back down the line.

Static Public Member Functions

« static validate (object)
Type validating code Raises an error if object is not either the empty string or a C4TSMINI_Block type.

Private Member Functions

» _entering ()

Method for entering a block.
+ _exiting ()

Method for exiting a block.

Generated by Doxygen

6 Class Documentation

Private Attributes

* node

SMINI node object.
« forwardsignal

Signal object (typically a three color, one head block signal.
* reversesignal

Signal object (typically a three color, one head block signal.
* isoccupied

Saved occupation state.

3.1.1 Detailed Description

Block occupation detection using Circuits4 Tracks Quad Occupancy Detectors and Azatrax SR4s.

Track Power Common
' o—

.
{Rail Gap} {Rail Gap)

—e

-

[l |
s T
s {
mi

Track Power Hot

SMINI Card

Circuit4Tracks
Quad Detector | 45y
1 T+5V
8] -
x5§ Input port
gxz o1 Connections
G0 |GND

Figure 3.1 Block detection with a Circuits4Tracks Quad Occupancy Detector and a Chubb SMINI card

Above is a simple diagram for using Circuits4Tracks Quad Occupancy Detectors for block occupation detection. A
Circuits4Tracks Quad Occupancy board has four current sensors. One wires one side of the track power (either DCC
or DC) to a common rail and the other side through the Circuits4Tracks Quad Occupancy Detector to rails isolated with
gaps (possibly with insulating rail joiners). This code uses a Chubb SMINI board to connect a Circuits4Tracks Quad
Occupancy Detectors to the computer via a serial interface.

Typical usage:

Four blocks in a loop:

Connect to the cmribus through a USB RS485 adapter at /dev/ttyUSBO
CmriSupport::CmriNode openport /dev/ttyUSBO

SMINI board at address 0

CmriSupport::CmriNode SMINIO -type SMINI -address O

The fi four bits of the first port are wired to the Circuits4Tracks
Quad Occupancy Detector

C4TSR4_Block blockl -nodeobj SMINIO -port 0 -bit 0 -signalobj signall

C4TSR4_Block block2 -nodeobj SMINIO -port 0 -bit 1 -signalobj signal2 -previousblock blockl
C4TSR4_Block block3 -nodeobj SMINIO -port 0 -bit 2 -signalobj signal3 -previousblock block2
C4TSR4_Block block4 -nodeobj SMINIO -port O -bit 3 -signalobj signal4 -previousblock block3
blockl configure -previousblock block4

Generated by Doxygen

3.1 C4ATSMINI_Block Class Reference 7

A Schematic of the layout would look like this:

Figure 3.2 Four block circle

For the track work elements use "blockN occupiedp” for the track work elements' occupied command: eg Block1 would
have 'block1 occupiedp' as its occupied command, that is its edit window would look like:

Generated by Doxygen

8 Class Documentation

Name:
bject Type

Ea
CurvedBlock
A

P

Control Point: Loop
—First Coord

X:[130.0 <iv:[30.0 Use Crosshairs

—Second Coord
X:[30 <iv:[130.0 =] Use Crosshairs

Radius: |1DD
Label:
Position: |bel0w
blockl occupiedp

Occupied Script:

Update] Cancel Redraw

Figure 3.3 Editing Block1

The other three blocks would be similar.

Then in the Main Loop, you would have:
= {true} {

MainWindow ctcpanel invoke Blockl

MainWindow ctcpanel invoke Block2

MainWindow ctcpanel invoke Block3

MainWindow ctcpanel invoke Block4

update; # Update display

}

Author

Robert Heller <heller@deepsoft.com>

Definition at line 62 of file C4TSMINI_Block.tcl.

3.1.2 Constructor & Destructor Documentation

Generated by Doxygen

3.1 C4ATSMINI_Block Class Reference

3.1.2.1 CATSMINI_Block()

C4TSMINI_Block::C4TSMINI_Block (

name ,

)

Constructor: initialize the block object.

Create a lowlevel node object and install it as a component. Install the blocks signal (created elsewhere).

Parameters

name

Name of the block object

Options:

-nodeobj This is the Cmri node for this block. This is a CmriNode object, defined in the Control
Support package. This option is read-only and must be set at creation time.

-port The input port on the Cmri node. This is an integer greater or equal to 0. This option is
read-only and can only be set at creation time. The default is 0.

-bit This defines the input bit on the input port for this block. This is an integer from 0 to 7 inclusive
and is read-only and can only be set at creation time. The default is 0.

-forwardsignalobj This block's forward signal. This option is read-only and can only be set at creation
time. The default is the empty string.

-reversesignalobj This block's reverse signal. This option is read-only and can only be set at creation
time. The default is the empty string.

-previousblock Previous block (next block in reverse) — used for 'propagating’ signal aspects and
must be a C4TSMINI_Block type object. The default is the empty string.

-nextblock Next block (previous block in reverse) — used for 'propagating’ signal aspects and must be
a C4TSMINI_Block type object. The default is the empty string.

-direction Current running direction, either the word forward or reverse. The default is forward.

3.1.3 Member Function Documentation

3.1.3.1 _entering()

C4TSMINI_Block::_entering () [private]

Method for entering a block.

Generated by Doxygen

10 Class Documentation

3.1.3.2 _exiting()

C4TSMINI_Block::_exiting () [private]

Method for exiting a block.

3.1.3.3 occupiedp()

CATSMINI_Block::occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block occupation.

3.1.3.4 propagate()

C4TSMINI_Block: :propagate (
aspect ,
from ,

)
Method used to propagate distant signal states back down the line.

Parameters

aspect | The signal aspect that is being propagated.

from The propagating block (not used).

Options:

« -direction The direction of the propagation.

3.1.3.5 validate()

static C4TSMINI_Block::validate (
object) [static]

Type validating code Raises an error if object is not either the empty string or a C4TSMINI_Block type.

3.1.4 Member Data Documentation

Generated by Doxygen

3.2 C4ATSR4_Block Class Reference

11

3.1.4.1 forwardsignal

C4TSMINI_Block::forwardsignal [private]

Signal object (typically a three color, one head block signal.

Definition at line 85 of file C4TSMINI_Block.tcl.

3.1.4.2 isoccupied

C4TSMINI_Block::isoccupied [private]
Saved occupation state.

Definition at line 93 of file C4TSMINI_Block.tcl.

3.1.4.3 node

C4TSMINI_Block::node [private]
SMINI node object.

Definition at line 81 of file C4TSMINI_Block.tcl.

3.1.4.4 reversesignal

C4TSMINI_Block::reversesignal [private]

Signal object (typically a three color, one head block signal.

Definition at line 89 of file C4TSMINI_Block.tcl.

3.2 CA4TSR4_Block Class Reference

Block occupation detection using Circuits4Tracks Quad Occupancy Detectors and Azatrax SR4s.

Generated by Doxygen

12 Class Documentation

Public Member Functions

+ C4TSR4_Block (name,...)

Constructor: initialize the block object.
* occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block occupation.
* propagate (aspect, from,...)

Method used to propagate distant signal states back down the line.

Static Public Member Functions

« static validate (object)
Type validating code Raises an error if object is not either the empty string or a C4TSR4_Block type.

Private Member Functions

» _entering ()

Method for entering a block.
+ _exiting ()
Method for exiting a block.

Private Attributes

¢ sensor

SR4 object.
« forwardsignal

Signal object (typically a three color, one head block signal.
* reversesignal

Signal object (typically a three color, one head block signal.
* isoccupied

Saved occupation state.

Static Private Attributes

« static sensemap

Sensor bit mapping to sensor functions.

Generated by Doxygen

3.2 CATSR4 _Block Class Reference 13

3.2.1 Detailed Description

Block occupation detection using Circuits4Tracks Quad Occupancy Detectors and Azatrax SR4s.

Track Power Common
' o—

il I |]

[ms T T Iy

) + e 1

I T t il
{Rail Gap) (Rail Gap)

—o

Track Power Hot

CircuitdTracks
Quad Detector |, ..

8% ngigﬁﬂr
x5 8l

é}xz S T I3

: o |) ? O

Two ASSR-4128s

Figure 3.4 Block detection with a Circuits4Tracks Quad Occupancy Detector and a SR4

Above is a simple diagram for using Circuits4Tracks Quad Occupancy Detectors for block occupation detection. A
Circuits4Tracks Quad Occupancy board has four current sensors. One wires one side of the track power (either DCC
or DC) to a common rail and the other side through the Circuits4Tracks Quad Occupancy Detector to rails isolated with
gaps (possibly with insulating rail joiners). This code uses Azatrax SR4s to connect a Circuits4 Tracks Quad Occupancy
Detectors to the computer via USB. A small circuit board with two ASSR-4128s (dual Solid State Relays) and four 1,000
Ohm resistors and some headers connects the Circuits4Tracks board to the SR4.

Typical usage:

Four blocks in a loop:

SR4 quadsensel -this [Azatrax_OpenDevice 0400001234 $::Azatrax_idSR4Product]

C4TSR4_Block blockl -sensorobj quadsensel -bit 0 -signalobj signall

C4TSR4_Block block2 -sensorobj quadsensel -bit 1 -signalobj signal2 -previousblock blockl
C4TSR4_Block block3 -sensorobj quadsensel -bit 2 -signalobj signal3 -previousblock block2
C4TSR4_Block block4 -sensorobj quadsensel -bit 3 -signalobj signal4 -previousblock block3
blockl configure -previousblock block4

A Schematic of the layout would look like this:

Generated by Doxygen

14 Class Documentation

Figure 3.5 Four block circle

For the track work elements use "blockN occupiedp” for the track work elements' occupied command: eg Block1 would
have 'block1 occupiedp' as its occupied command, that is its edit window would look like:

Generated by Doxygen

3.2 C4ATSR4_Block Class Reference

Name:
bject Type

Ea
CurvedBlock
A

P

Control Point: Loop
—First Coord

X:[130.0 <iv:[30.0 Use Crosshairs

—Second Coord
X:[30 <iv:[130.0 =] Use Crosshairs

Radius: |1DD
Label:
Position: |bel0w
blockl occupiedp

Occupied Script:

Cancel Redraw

Figure 3.6 Editing Block1

The other three blocks would be similar.

Then in the Main Loop, you would have:
= {true} {

MainWindow ctcpanel invoke Blockl

MainWindow ctcpanel invoke Block2

MainWindow ctcpanel invoke Block3

MainWindow ctcpanel invoke Block4

update; # Update display

}

Author

Robert Heller <heller@deepsoft.com>

Definition at line 59 of file C4ATSR4_Block.tcl.

3.2.2 Constructor & Destructor Documentation

Generated by Doxygen

16 Class Documentation

3.2.2.1 CATSR4_Block()

C4TSR4_Block::C4TSR4_Block (
name ,
)
Constructor: initialize the block object.

Create a lowlevel sensor object and install it as a component. Install the blocks signal (created elsewhere).

Parameters

name | Name of the block object

Options:

+ -sensorobj This is the SR4 for this (and up to three other blocks). This option is read-only and must
be set at creation time.

« -bit This defines the input bit on the SR4 for this block as an integer from 0 to 3, inclusive. This option
is read-only and can only be set at creation time. The default is 0.

« -forwardsignalobj This block's forward signal. This option is read-only and can only be set at creation
time. The default is the empty string.

+ -reversesignalobj This block's reverse signal. This option is read-only and can only be set at creation
time. The default is the empty string.

» -previousblock Previous block (next block in reverse) — used for 'propagating’ signal aspects and
must be a C4TSR4_Block type object. The default is the empty string.

+ -nextblock Next block (previous block in reverse) — used for 'propagating' signal aspects and must be
a C4TSR4_Block type object.
The default is the empty string.

« -direction Current running direction, either the word forward or reverse. The default is forward.

3.2.3 Member Function Documentation

3.2.3.1 _entering()

C4TSR4_Block::_entering () [private]

Method for entering a block.

Generated by Doxygen

3.2 C4ATSR4_Block Class Reference

17

3.2.3.2 _exiting()

C4TSR4_Block::_exiting () [private]

Method for exiting a block.

3.2.3.3 occupiedp()

CATSR4_Block: :occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block occupation.

3.2.3.4 propagate()

C4TSR4_Block: :propagate (
aspect ,
from ,

)
Method used to propagate distant signal states back down the line.

Parameters

aspect | The signal aspect that is being propagated.

from The propagating block (not used).

Options:

« -direction The direction of the propagation.

3.2.3.5 validate()

static C4TSR4_Block::validate (
object) [static]

Type validating code Raises an error if object is not either the empty string or a C4TSR4_Block type.

3.2.4 Member Data Documentation

Generated by Doxygen

18

Class Documentation

3.2.4.1 forwardsignal

C4TSR4_Block::forwardsignal [private]

Signal object (typically a three color, one head block signal.

Definition at line 81 of file C4TSR4_Block.tcl.

3.2.4.2 isoccupied

C4TSR4_Block::isoccupied [private]
Saved occupation state.

Definition at line 89 of file C4TSR4_Block.tcl.

3.2.4.3 reversesignal

C4TSR4_Block: :reversesignal [private]

Signal object (typically a three color, one head block signal.

Definition at line 85 of file C4ATSR4_Block.tcl.

3.2.4.4 sensemap

C4TSR4_Block::sensemap [static], [private]
Sensor bit mapping to sensor functions.

Definition at line 93 of file C4TSR4_Block.tcl.

3.2.4.5 sensor

C4TSR4_Block::sensor [private]
SR4 object.

Definition at line 77 of file C4ATSR4_Block.tcl.

Generated by Doxygen

3.3 C4TTB_Block Class Reference

19

3.3 C4TTB_Block Class Reference

Block occupation detection using Circuits4Tracks Quad Occupancy Detector and a CTI Train Brain.

Public Member Functions

« C4TTB_Block (name,...)

Constructor: initialize the block object.
+ occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block occupation.
» propagate (aspect, from,...)

Method used to propagate distant signal states back down the line.

Static Public Member Functions

« static validate (object)

Type validating code Raises an error if object is not either the empty string or a C4TTB_Block type.

Private Member Functions

» _entering ()

Method for entering a block.
+ _exiting ()
Method for exiting a block.

Private Attributes

* acela

Acela object.
« forwardsignal

Signal object (typically a three color, one head block signal.
* reversesignal

Signal object (typically a three color, one head block signal.
* isoccupied

Saved occupation state.

Generated by Doxygen

20

Class Documentation

3.3.1 Detailed Description

Block occupation detection using Circuits4Tracks Quad Occupancy Detector and a CTI Train Brain.

Track Power Common

===

I hd

Rail Gap
—o

Track Power Hot

L e

Rail Gap

Trai
CircuitdTracks
Quad Detector
Qlx1
2] 9
X58 Input port
K2 a Connection
&Y
[S
= GHND B (Common)

{A terminals)

Brain

Figure 3.7 Block detection with a Circuits4Tracks Quad Occupancy Detector and a Train Brain

Above is a simple diagram for using Circuits4 Tracks Quad Occupancy Occupancy board has four current sensors. One
wires one side of the track power (either DCC or DC) to a common rail and the other side through the Circuits4 Tracks
Quad Occupancy Detector to rails isolated with gaps (possibly with insulating rail joiners). This code uses a CTI Train
Brain to connect a Circuits4Tracks Quad Occupancy Detectors to the computer via a CTI Acela computer interface.

Typical usage:

Four blocks in a loop:

Connect to the CTI Acela via USB the serial interface at /dev/ttyACMO

ctiacela::CTIAcela acela /dev/ttyACMO
The fi four bits of the first Train Brain
Quad Occupancy Detector

C4ATTB_Block blockl -acelaobj
C4TTB_Block block2 -acelaobj
C4TTB_Block block3 -acelaobj acela -address
C4TTB_Block block4 -acelaobj acela -address

blockl configure -previousblock block4

are wired

—address
—address

0 -signalobj
1 -signalobj
2 -signalobj
3 -signalobj

acela
acela

A Schematic of the layout would look like this:

to the
signall
signal2
signal3
signald

Circuits4Tracks

-previousblock
—-previousblock
—-previousblock

blockl
block2
block3

Generated by Doxygen

3.3 C4ATTB_Block Class Reference 21

Figure 3.8 Four block circle

For the track work elements use "blockN occupiedp” for the track work elements' occupied command: eg Block1 would
have 'block1 occupiedp' as its occupied command, that is its edit window would look like:

Generated by Doxygen

22 Class Documentation

Name:
bject Type

Ea
CurvedBlock
A

P

Control Point: Loop
—First Coord

X:[130.0 <iv:[30.0 Use Crosshairs

—Second Coord
X:[30 <iv:[130.0 =] Use Crosshairs

Radius: |1DD
Label:
Position: |bel0w
blockl occupiedp

Occupied Script:

Update] Cancel Redraw

Figure 3.9 Editing Block1

The other three blocks would be similar.

Then in the Main Loop, you would have:
= {true} {

MainWindow ctcpanel invoke Blockl

MainWindow ctcpanel invoke Block2

MainWindow ctcpanel invoke Block3

MainWindow ctcpanel invoke Block4

update; # Update display

}

Author

Robert Heller <heller@deepsoft.com>

Definition at line 59 of file C4TTB_Block.tcl.

3.3.2 Constructor & Destructor Documentation

Generated by Doxygen

3.3 C4ATTB_Block Class Reference 23

3.3.2.1 CATTB_Block()

C4TTB_Block::C4TTB_Block (
name ,
)
Constructor: initialize the block object.

Install an CTIAcela object as a component created elsewhere). Install the blocks signal (created elsewhere).

Parameters

name | Name of the block object

Options:
+ -acelaobj This is the CTlAcela object. This option is read-only and must be set at creation time.

+ -address The address of the sensor bit for this block. This is an integer from 0 to 65535 inclusive.
This option is read-only and can only be set at creation time. The default is 0.

« -forwardsignalobj This block's forward signal. This option is read-only and can only be set at creation
time. The default is the empty string.

+ -reversesignalobj This block's reverse signal. This option is read-only and can only be set at creation
time. The default is the empty string.

« -previousblock Previous block (next block in reverse) — used for 'propagating’ signal aspects and
must be a C4TTB_Block type object. The default is the empty string.

« -nextblock Next block (previous block in reverse) — used for 'propagating' signal aspects and must be
a CATTB_Block type object.
The default is the empty string.

« -direction Current running direction, either the word forward or reverse. The default is forward.

3.3.3 Member Function Documentation

3.3.3.1 _entering()

C4TTB_Block::_entering () [private]

Method for entering a block.

Generated by Doxygen

24 Class Documentation

3.3.3.2 _exiting()

CATTB_Block::_exiting () [private]

Method for exiting a block.

3.3.3.3 occupiedp()

CATTB_Block: :occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block occupation.

3.3.3.4 propagate()

C4TTB_Block: :propagate (
aspect ,
from ,

)
Method used to propagate distant signal states back down the line.

Parameters

aspect | The signal aspect that is being propagated.

from The propagating block (not used).

Options:

« -direction The direction of the propagation.

3.3.3.5 validate()

static CATTB_Block::validate (
object) [static]

Type validating code Raises an error if object is not either the empty string or a C4TTB_Block type.

3.3.4 Member Data Documentation

Generated by Doxygen

3.4 MRD2_Block Class Reference

25

3.3.4.1 acela

C4TTB_Block::acela [private]
Acela object.

Definition at line 77 of file C4TTB_Block.tcl.

3.3.4.2 forwardsignal

C4TTB_Block::forwardsignal [private]

Signal object (typically a three color, one head block signal.

Definition at line 81 of file C4TTB_Block.tcl.

3.3.4.3 isoccupied

C4TTB_Block::isoccupied [private]
Saved occupation state.

Definition at line 89 of file C4TTB_Block.tcl.

3.3.4.4 reversesignal

C4TTB_Block::reversesignal [private]

Signal object (typically a three color, one head block signal.

Definition at line 85 of file C4TTB_Block.tcl.

3.4 MRD2_Block Class Reference

Block occupation detection using Azatrax MRD2Us.

Generated by Doxygen

26 Class Documentation

Public Member Functions
+ MRD2_Block (name,...)

Constructor: initialize the block object.
» occupiedp ()

The occupiedp method returns yes or no (frue or false) indicating block occupation.
+ propagate (aspect, from,...)

Method used to propagate distant signal states back down the line.

Static Public Member Functions

« static validate (object)
Type validating code Raises an error if object is not either the empty string or a MRD2_Block type.

Private Member Functions

» _entering ()

Method for entering a block.
» _exiting ()
Method for exiting a block.

Private Attributes

* sensor

MRD2 object.
« forwardsignal

Signal object (typically a three color, one head block signal.
* reversesignal

Signal object (typically a three color, one head block signal.

3.4.1 Detailed Description

Block occupation detection using Azatrax MRD2Us.

all

T 4+——Forward

CSensel

C Sense?2

MRD2

Figure 3.10 Block detection using a MRD2

Generated by Doxygen

3.4 MRD2_Block Class Reference 27

Above is a simple diagram for using Azatrax MRD2Us for block occupation detection. The Azatrax MRD2U has two IR
sensors and one can be use to test for entering a block and one for leaving a block.

Typical usage:

Four blocks in a loop:

MRD2_Block blockl —-sensorsn 0200001234 -forwardsignalobij signall

MRD2_Block block2 -sensorsn 0200001235 -forwardsignalobj signal2 -previousblock blockl
MRD2_Block block3 -sensorsn 0200001236 -forwardsignalobj signal3 -previousblock block2
MRD2_Block block4 -sensorsn 0200001237 -forwardsignalobj signal4 -previousblock block3
blockl configure -previousblock block4

A Schematic of the layout would look like this:

Figure 3.11 Four block circle

For the track work elements use "blockN occupiedp" for the track work elements' occupied command: eg Block1 would
have 'block1 occupiedp' as its occupied command, that is its edit window would look like:

Generated by Doxygen

28 Class Documentation

Name:
bject Type

Ea
CurvedBlock
A

P

Control Point: Loop
—First Coord

X:[130.0 <iv:[30.0 Use Crosshairs

—Second Coord
X:[30 <iv:[130.0 =] Use Crosshairs

Radius: |1DD
Label:
Position: |bel0w
blockl occupiedp

Occupied Script:

Update] Cancel Redraw

Figure 3.12 Editing Block1

The other three blocks would be similar.

Then in the Main Loop, you would have:
= {true} {

MainWindow ctcpanel invoke Blockl

MainWindow ctcpanel invoke Block2

MainWindow ctcpanel invoke Block3

MainWindow ctcpanel invoke Block4

update; # Update display

}

Author

Robert Heller <heller@deepsoft.com>

Definition at line 51 of file MRD2_Block.tcl.

3.4.2 Constructor & Destructor Documentation

Generated by Doxygen

3.4 MRD2_Block Class Reference

29

3.4.2.1 MRD2_Block()

MRD2_Block::MRD2_Block (

name ,

)

Constructor: initialize the block object.

Create a low level sensor object and install it as a component. Install the blocks signal (created elsewhere).

Parameters

name

Name of the block object

Options:

-sensorsn Serial number of the MRD2U for this block. This option is read-only and must be set at
creation time.

-forwardsignalobj This block's forward signal. This option is read-only and can only be set at creation
time. The default is the empty string.

-reversesignalobj This block's reverse signal. This option is read-only and can only be set at creation
time. The default is the empty string.

-previousblock Previous block (next block in reverse) — used for 'propagating' signal aspects and
must be a MRD2_Block type object. The default is the empty string.

-nextblock Next block (previous block in reverse) — used for 'propagating' signal aspects and must be
a MRD2_Block type object.
The default is the empty string.

-direction Current running direction, either the word forward or reverse. The default is forward.

3.4.3 Member Function Documentation

3.4.3.1 _entering()

MRD2_Block::_entering () [private]

Method for entering a block.

Generated by Doxygen

30 Class Documentation

3.4.3.2 _exiting()

MRD2_Block::_exiting () [private]

Method for exiting a block.

3.4.3.3 occupiedp()

MRD2_Block: :occupiedp ()

The occupiedp method returns yes or no (true or false) indicating block occupation.

3.4.3.4 propagate()

MRD2_Block: :propagate (
aspect ,
from ,

)

Method used to propagate distant signal states back down the line.

Parameters

aspect | The signal aspect that is being propagated.

from The propagating block (not used).

Options:

« -direction The direction of the propagation.

3.4.3.5 validate()

static MRD2_Block::validate (
object) [static]

Type validating code Raises an error if object is not either the empty string or a MRD2_Block type.

3.4.4 Member Data Documentation

Generated by Doxygen

3.4 MRD2_Block Class Reference

31

3.4.4.1 forwardsignal

MRD2_Block::forwardsignal [private]

Signal object (typically a three color, one head block signal.

Definition at line 72 of file MRD2_Block.tcl.

3.4.4.2 reversesignal

MRD2_Block::reversesignal [private]

Signal object (typically a three color, one head block signal.

Definition at line 76 of file MRD2_Block.tcl.

3.4.4.3 sensor

MRD2_Block::sensor [private]

MRD2 object.

Definition at line 68 of file MRD2_Block.tcl.

Generated by Doxygen

32

Class Documentation

Generated by Doxygen

Index

_entering
C4TSMINI_Block, 9
C4TSR4_Block, 16
C4TTB_Block, 23
MRD2_Block, 29

_exiting
C4TSMINI_Block, 9
C4TSR4_Block, 16
C4TTB_Block, 23
MRD2_Block, 29

acela
C4TTB_Block, 24

CATSMINI_Block, 5
_entering, 9
_exiting, 9
C4TSMINI_Block, 8
forwardsignal, 10
isoccupied, 11
node, 11
occupiedp, 10
propagate, 10
reversesignal, 11
validate, 10

C4TSR4_Block, 11
_entering, 16
_exiting, 16
C4TSR4_Block, 15
forwardsignal, 17
isoccupied, 18
occupiedp, 17
propagate, 17
reversesignal, 18
sensemap, 18
sensor, 18
validate, 17

C4TTB_Block, 19
_entering, 23
_exiting, 23
acela, 24
C4TTB_Block, 22
forwardsignal, 25
isoccupied, 25
occupiedp, 24
propagate, 24

reversesignal, 25
validate, 24

forwardsignal
C4TSMINI_Block, 10
C4TSR4 _Block, 17
C4TTB_Block, 25
MRD2_Block, 30

isoccupied
C4TSMINI_Block, 11
C4TSR4_Block, 18
C4TTB_Block, 25

MRD2_Block, 25
_entering, 29
_exiting, 29
forwardsignal, 30
MRD2_Block, 28
occupiedp, 30
propagate, 30
reversesignal, 31
sensor, 31
validate, 30

node
C4TSMINI_Block, 11

occupiedp
C4TSMINI_Block, 10
C4TSR4_Block, 17
C4TTB_Block, 24
MRD2_Block, 30

propagate
CATSMINI_Block, 10
C4TSR4_Block, 17
C4ATTB_Block, 24
MRD2_Block, 30

reversesignal
C4TSMINI_Block, 11
C4TSR4_Block, 18
C4TTB_Block, 25
MRD2_Block, 31

sensemap

Generated by Doxygen

34

INDEX

C4TSR4_Block, 18
sensor

C4TSR4_Block, 18

MRD2_Block, 31

validate
C4TSMINI_Block, 10
C4TSR4_Block, 17
C4ATTB_Block, 24
MRD2_Block, 30

Generated by Doxygen

	1 Block Abstract Types (Classes)
	1.1 Source Files
	1.1.1 MRD2U Sensor (USB connected optical sensor)
	1.1.2 Circuits4Tracks Quad Occupancy Detector with a SR4 (USB connected I/O board)
	1.1.3 Circuits4Tracks Quad Occupancy Detector connected to a C/MRI SMINI board
	1.1.4 Circuits4Tracks Quad Occupancy Detector connected to a CTI Train Brain

	1.2 Common methods and functionality

	2 Class Index
	2.1 Class List

	3 Class Documentation
	3.1 C4TSMINI_Block Class Reference
	3.1.1 Detailed Description
	3.1.2 Constructor & Destructor Documentation
	3.1.2.1 C4TSMINI_Block()

	3.1.3 Member Function Documentation
	3.1.3.1 _entering()
	3.1.3.2 _exiting()
	3.1.3.3 occupiedp()
	3.1.3.4 propagate()
	3.1.3.5 validate()

	3.1.4 Member Data Documentation
	3.1.4.1 forwardsignal
	3.1.4.2 isoccupied
	3.1.4.3 node
	3.1.4.4 reversesignal

	3.2 C4TSR4_Block Class Reference
	3.2.1 Detailed Description
	3.2.2 Constructor & Destructor Documentation
	3.2.2.1 C4TSR4_Block()

	3.2.3 Member Function Documentation
	3.2.3.1 _entering()
	3.2.3.2 _exiting()
	3.2.3.3 occupiedp()
	3.2.3.4 propagate()
	3.2.3.5 validate()

	3.2.4 Member Data Documentation
	3.2.4.1 forwardsignal
	3.2.4.2 isoccupied
	3.2.4.3 reversesignal
	3.2.4.4 sensemap
	3.2.4.5 sensor

	3.3 C4TTB_Block Class Reference
	3.3.1 Detailed Description
	3.3.2 Constructor & Destructor Documentation
	3.3.2.1 C4TTB_Block()

	3.3.3 Member Function Documentation
	3.3.3.1 _entering()
	3.3.3.2 _exiting()
	3.3.3.3 occupiedp()
	3.3.3.4 propagate()
	3.3.3.5 validate()

	3.3.4 Member Data Documentation
	3.3.4.1 acela
	3.3.4.2 forwardsignal
	3.3.4.3 isoccupied
	3.3.4.4 reversesignal

	3.4 MRD2_Block Class Reference
	3.4.1 Detailed Description
	3.4.2 Constructor & Destructor Documentation
	3.4.2.1 MRD2_Block()

	3.4.3 Member Function Documentation
	3.4.3.1 _entering()
	3.4.3.2 _exiting()
	3.4.3.3 occupiedp()
	3.4.3.4 propagate()
	3.4.3.5 validate()

	3.4.4 Member Data Documentation
	3.4.4.1 forwardsignal
	3.4.4.2 reversesignal
	3.4.4.3 sensor

	Index

