Model Railroad System
2.2.1

Generated by Doxygen 1.8.17

1 Preface 1
2 Introduction 3
2.1 How this manual isorganized. 3

3 Universal Test Program Reference 5
3.1 Main GUIElements o e e 5
1A Main WIindow o e e e 5
3.1.20pen New Port e 6
B.2TeStS . . . e e 6
3.21 TestOutput Card e e 6
3.22Wraparound Test L e 7

4 OpenLCB Program Reference 9
41Startup . . . e e e e e e 9
41.1 Command Line Options L e e 9
41.2GUIStartup L e 10

42Main GUIElements L 10
4.2.1 Configuration ToOIS e e e 12

4.2.1.1 Memory Configuration Options 12

4.2.1.2 Configuration RAW Tool o e 13

4.2.1.3 CDI Configuration Tool e 13
422EventTools e 14
4221S8endEventTool e 14
4222Received Events L 15

5 OpenLCB Daemons (Hubs and Virtual nodes) 17
51 HubDaemons e e 17
5.2 Virtual Nodes e e 18
5.2.1 Common Node Configuration 19

5.2.2 EventExchange node for Azatrax MRD2 boards. oo 19

5.2.2.1 XML Schema for configurationfiles oL 20

5.2.3 EventExchange node for Raspberry PiGPIOpins. 21

5.2.3.1 XML Schema for configurationfiles o 21

5.2.4 EventExchange node for MCP23008 GPIO pins. o it i 22

5.2.4.1 XML Schema for configurationfiles oo 23

5.2.5 EventExchange node for MCP23017 GPIO pins. o i 24

5.2.5.1 XML Schema for configurationfiles L. 24

5.2.6 EventExchange node for MCP23017 as signalheads. 25

5.2.6.1 XML Schema for configurationfileso 26

5.2.7 EventExchange node for the quad signalhead HAT. 27

Generated by Doxygen

5.2.7.1 XML Schema for configurationfiles o 27

5.2.8 EventExchange node for a SPI connected MAX7221 Signal Driver. 28
5.2.8.1 XML Schema for configurationfiles L. 28

5.2.9 EventExchange node for virtual track circuits. L L L 29
5.2.9.1 XML Schema for configurationfiles L o 30

5.2.10 EventExchange node for logic blocks.o L 32
5.2.10.1 XML Schema for configurationfiles 32

5.2.11 EventExchange node fora CTl Acelanetwork. 33
5.2.11.1 XML Schema for configurationfiles 35

5.2.12 EventExchange node fora C/MRInetwork. 36
5.2.12.1 XML Schema for configurationfiles Lo 37

6 Offline LCC Node Editor Reference 39
6.1 Command Line Parametersand Options e 39
6.1.10ptONS e 39
6.1.2 X11 Resource Options e e 39
6.1.2.1 Otheroptions e e 39

6.1.3 Parameters L e 40

6.2 Main GUI Elements 40
7 Layout Control Database 41
TATUINOULS . . . o e e e e e 41
T.2BIOCKS . . . e 41
7.380ignals . . . L e 42
TASENSOIS . . o o o e 42
7.5C0oNtrols e 42
8 Azatrax Test Programs Reference 43
8.1 MRD Test Program Reference 43
8.1.1 SyNOPSIS e 43
8.1.2Main GUI Screen L e 43

8.2 MRD Sensor Loop Reference L 44
8.2.1 SYNOPSIS o e 44
8.22Main GUI Screen L e 45

8.3 SR4 Test Program Reference 45
8.3.1SYNOPSIS e 45
8.3.2Main GUI Screen L e 45

8.4 SL2 Test Program Reference 46
84T SYNOPSIS . . . o . o 46
8.42Main GUIScreen L e 46

Generated by Doxygen

8.5 Azatrax Device Map Reference
8.5.1 SyNoPSIS e
8.5.2Main GUIScreen L e

9 XPressNet Throttle
91 Main GUI . . o e
9.2 Programming Mode e
9.30pen Port e

10 Generic Throttle
10.1 Main GUI . . . o e e e e e e
10.2 Programming Mode L e e

11 Time Table (V2) Tutorial
11.1 Creatinganewtimetable e
11.1.1 Creating stations
11.1.2Creatingcabs L
11.2Creating trains e

11.3 Printingatimetable

12 Time Table (V2) Reference
121 Command Line Usage o e e
12.2 Layoutof the Main GUI o e e
123 CreatingaNew Time Table
12.3.1 Creating the station stops foranewtimetable
12.3.2Create AllCabs Dialog o
12.4 Loading an Exiting Time Table File
1258avingaTime Table File
126 AAding Trains o o e e e e e e e e e e
12.6.1 Create New Train Dialog
12.7 Deleting Trains o o e e e e e e e
12.8 Linking and Unlinking Duplicate Stations
12.9 Adding Station Storage Tracks L e e
1210 Adding Cabs L e e e e
12.11 Handling Notes L e e e e
12.11.1 Creating New Notes and Editing ExistingNotes
12.11.2 Adding and Removinga Notes ToTrains v
12.12 Printinga Time Table e
12.12.1 Print Timetable Dialog e
12.12.2 Print Configuration Dialog e
12.13 Exiting From the Program e

47
47
47

49
49
50
50

53
53
54

55
55
56
56
56
57

Generated by Doxygen

12.14 Select One Train Dialog o 0 87
1215 The View Menu L L 88
12151 Trains o 88
12152 Stations e 88
12153 Notes e 89
12.16 System Configuration L e e e 89
1217 Add Cab Dialog e 89
12.18 Add Remove Note Dialog o e e e 89
1219 Edit Note Dialog 89
12.20 Edit System Configuration e 89
1221 Edit Train Dialog o e e e e e e 89
12.22 Select A Storage Track Name o 89
12.23 Select One Note Dialog o o 89
12.24 Select One Station Dialog 0 e 89
13 Freight Car Forwarder (V2) Tutorial 91
13.1 Loading System Data e e e e e 91
13.2 Assigning Cars e 91
13.3RuUNNing Trains e e e e e 92
13.4 Printing Yard and Switch Lists 92
13.5Savingtheupdated cardata 92
13.6 Generating Reports e 92
13.7 Other activities o e e 92
14 Freight Car Forwarder (V2) Reference 93
14.1 Command Line Usage 93
14.2 Layoutof the Main GUI L e 93
14.3 Opening and loading a system file. e 96
14.4 Loading and reloading the cars file. 97
14.5 Savingthe carsfile. L 98
14.6 Managing trains and printing e e 99
14.6.1 Controlling Yard Lists o e 101
14.6.2 Enabling printing for all trains 102
14.6.3 Disabling printing for all trains L 102
14.6.4 Printing a dispatcherreport 102
14.6.5 Listing local trains for this shift 102
14.6.6 Listing manifests for this shift 102
14.6.7 Listing all trains for all shifts 103
14.6.8 Managingonetrain. e e e 103

14.7 Viewing a car'sinformation L e 103

Generated by Doxygen

14.8 Editing a car's information L 105
149 AddING @NEW Car o e e e e e 107
14.10 Deleting anexistingcar e e 108
14.11 Showing cars without assignments 109
14.12 Running the car assignment procedure Lo e e e 110
14.13 Running every train in the operating session 111
14.14 Runningthe box move trains L 113
1415 Runningasingletrain L L e e e e 114
14.16 Opening a Printer L e 115
14.17 Closing the printer L e e e e 118
14.18 Printing yard and switch lists 119
14.19 Showing carsonthe screen e 120
14.20 Printing Reports L e 122
14.21 Resetting Industry Statistics 124
14.22 Quiting the application e 125
1423 General Dialogs o e 126
14.23.1 Control Yard Lists Dialog o . e 126
14.23.2 Enter Owner Initials Dialog e 126
14.23.3 Select ATrain Dialog 126
14.23.4 Manage One TrainDialog e 127
14.2835Open Printer Dialog 127
14.23.6 Search ForCars Dialog o 127
14.23.7 Select A Division Dialog 128
14.23.8 Select An Industry Dialog L 128
14.23.9 Select A Station Dialog 128
14.23.10 Select Car Type 128
14.24 Datafiles e e e e 128
14241 DataFile Formats e e 129
142411 SystemFile 129

142412 1Industry File 130

142413 Trains File o e 131

142414 0rders File o e 131
14.241.50wners File e 131

14241.6 CarTypes File 131

142417 CarsFile e 132

14.241.8 Statistics File 132

14.241.9 Otherdatafiles 132

15 Resistor Program Reference 133

Generated by Doxygen

vi

16 LocoPull Program Reference 135
16.1 Basis and Mathematics L 135
16.2The GUI e e e e 136

16.2.1 The Scale e 137
16.2.2 Locomotive Information 138
16.2.3 Consist Information L 138
16.2.4 Zero-grade capacity e 138
16.2.5 Grade information L 138
16.2.6 Curve information L 138
16.2.7 Capacity and Grade plus Curve e 138

17 Camera Programs Reference 139

18 Dispatcher Tutorial 141
18.1 A"Simple Mode" CTC Panel e e e 141
182 ALCC Example 148

19 Dispatcher Reference 167
19.1 Main GUISCreen o e 167

19.1.1 Track work Node Graphs e 168
19.1.1.1 Loadinga Layout e 169
19.11.2Finding Nodes e 169
19.1.1.3 Printing Node Graphs e 169

19.1.2Creatinganew CTC Panel e 169

19.1.3 Opening an existing CTC Panel 170

19.2 Configurable Options L 170
19.3 CTC Panel WIindows e e 171

19.3.1 Menu items available when editing a CTC Panel Window 171
19.3 11 Filemenu e 171
19.3.1.2Editmenu L 172
19.3.1.3Viewmenu e e 172
19.3.1.4 Panel menu e 172
19.3.1.5C/Mrimenu e e e 173
19.3.1.6 Azatrax MenuU e e 173

19.4CTC Panel Code o o e e 173

19.4.1 Wrapped CTC Panel Programs ittt 173

19.42Generated Code e 173
19.4.2.1 Configuring CTC Panel Windows 174
19.4.2.2 Adding, Editing, and deleting elements to CTC Panel Windows 174
19.4.2.3 Adding, Editing, and deleting C/Mri nodes to CTC Pane Windows 175

Generated by Doxygen

vii

19.4.2.4 Adding, Editing, and deleting Azatrax nodes to CTC Panel Windows
19.43UserCode o o i
19.4.3.1 Insert-able Modules L

19.432The Main Loop o o o o e e

19.5 Add CMRINode Dialog o o
19.6 Select CMRINode Dialog
19.7 Add Azatrax Node Dialog e
19.8 Select Azatrax Node Dialog o e
19.9 Add Panel Object Dialog o o e
19.10 Select Panel Object Dialog
19.11 Edit User Code Dialog o e e
19.12 Find Node Dialog o e e e
1913 PrintDialog o e e e e
19.14 Select Panel Dialog o e
19.15 Using the Dispatcher program with layouts designed in XtrackCAD
19.15.1 LCC eventid format.
19.15.2 XTrackCAD "script" formats. e
19.15.3 Layout Controls Dialog
19.16 Insertable Module Library e
19.16.1 Track Work type o o
19.16.1.1 Blocks::Block

19.16.1.2 Switches:Switch L

19.16.2 Switch Plate type
19.16.3 Signal types L
19.16.4 Signal Plate type
19.16.5 Control Pointtype
19.16.6 Radio Group type o o e e

20 Dispatcher Examples
20.1 Example 1: Simple siding on single track mainline L Lo
20.2 Example 2: Mainline with an industrial siding L
20.3 Example 3: double track crossover L L L e
20.4 Example 4: From Chapter 9 of C/MRI User's Manual V3.0

21 SatelliteDaemon
211 SYNOPSIS
21.2 DESCRIPTION e e
21.3 0PTIONS e e e
21.4 PROTOCOL e e e e e e e
215 AUTHOR

175
175
175
175
176
176
177
178
179
180
181
182
182
183
184
184
184
184
184
184
185
185
185
185
186
186
186

187
187
193
204
213

Generated by Doxygen

viii

22 raildriverd 223
221 SYNOPSIS 223
22.2DESCRIPTION 223
223 0PTIONS . . . o 223
224 PARAMETERS 223
22.5 Hotplugging scripts and setup. L L 224
22.6 AUTHOR 224

23 OpenLCB Tcp/lp Hub Server 225
23.1 SYNOPSIS . . . e 225
23.2DESCRIPTION e e 225
23.3 PARAMETERS e 225
23.4 OPTIONS e e e e 225
23.5 AUTHOR e e e 226

24 OpenLCB GridConnect Tcp/lp Hub Server 227
241 SYNOPSIS o e e 227
242 DESCRIPTION e e e 227
243 PARAMETERS e e 227
244 OPTIONS e e 227
245 AUTHOR 228

25 OpenLCB Router Daemon (Server) 229
25.1 SYNOPSIS 229
25.2DESCRIPTION e 229
25.3 PARAMETERS 229
254 OPTIONS . . . o 229
255 AUTHOR e e e e 230

26 OpenLCB MRD2 Node 231
26.1 SYNOPSIS e e 231
26.2 DESCRIPTION e e e e e e 231
26.3 PARAMETERS e e 231
26.4 OPTIONS o e e 231
26.5 CONFIGURATION e e e e e e e e e e e e e e e 232
26.6 AUTHOR o e e e e 232

27 OpenLCB PiGPIO node 233
271 SYNOPSIS e e e e 233
27.2DESCRIPTION 233
27.3 PARAMETERS 233

Generated by Doxygen

274 0PTIONS e
27.5 CONFIGURATION
276 AUTHOR e

28 OpenLCB PiMCP23008 node
28.1 SYNOPSIS
28.2DESCRIPTION e
28.3 PARAMETERS e
28.4 0OPTIONS e
28.5 CONFIGURATION e e e e e e e e s e
28.6 AUTHOR e

29 OpenLCB PiMCP23017 node
29.1 SYNOPSIS
29.2 DESCRIPTION e
29.3 PARAMETERS
29.4 OPTIONS e
29.5 CONFIGURATION e
29.6 AUTHOR

30 OpenLCB PiMCP23017 as signal driver node
30.1 SYNOPSIS e
30.2 DESCRIPTION o
30.3 PARAMETERS
30.4 OPTIONS o
30.5 CONFIGURATION e e e e e e e e e e e s s
30.6 AUTHOR

31 OpenLCB program for the MCP23017-based quad signal head HAT
1.1 SYNOPSIS e
31.2DESCRIPTION e
31.3 PARAMETERS e
31.40PTIONS . . . e
31.5 CONFIGURATION e e e e e e e
1.6 AUTHOR e

32 OpenLCB PiSPIMax7221 node
32.1 SYNOPSIS e
32.2DESCRIPTION e
32.3 PARAMETERS e
324 0PTIONS . . . e

233
234
234

235
235
235
235
235
236
236

237
237
237
237
237
238
238

239
239
239
239
239
240
240

241
241
241
241
241
242
242

Generated by Doxygen

32.5 CONFIGURATION e e e e e e s 244
32.6 AUTHOR 244

33 OpenLCB Virtual Track Circuits node 245
33.1SYNOPSIS . . . o 245
33.2DESCRIPTION 245
33.2.1 Coderate and aspect. L e 245

33.3 PARAMETERS e e 246
33.4 OPTIONS . . . e e e s 246
33.5 CONFIGURATION e e e e e e 246
33.6 AUTHOR e e 246

34 OpenLCB Logic node 247
34.1 SYNOPSIS e 247
342 DESCRIPTION e e e 247
34.3 PARAMETERS e e e 247
34.40PTIONS e e 248
34.5 CONFIGURATION e e e e e e e e e e e 248
34.6 AUTHOR o e e e e 248

35 OpenLCB Acela Node 249
35.1 SYNOPSIS 249
35.2DESCRIPTION 249
35.3 PARAMETERS 249
35.4 0PTIONS . . . o 249
35.5 CONFIGURATION e e e e e e e e e s s 250
35.6 AUTHOR 250

36 OpenLCB CMRI Node 251
36.1 SYNOPSIS 251
36.2 DESCRIPTION e e e 251
36.3 PARAMETERS e e e 251
36.4 OPTIONS e e 251
36.5 CONFIGURATION e e e e e e e e e e e e e 252
36.6 AUTHOR o e e 252

37 JMRI Tables to LayoutDB converter 253
37.1 SYNOPSIS e e 253
37.2DESCRIPTION e e e 253
37.3PARAMETERS 253
374 0PTIONS 253

Generated by Doxygen

xi

375 AUTHOR

38 LayoutDB to JMRI Tables converter
38.1 SYNOPSIS e
38.2DESCRIPTION e
38.3 PARAMETERS
384 0PTIONS e
385 AUTHOR e

39 Offline LCC Node Editor

39.1 SYNOPSIS
39.2 DESCRIPTION e
39.3 PARAMETERS e
39.4 OPTIONS . . .

39.4.1 X11 Resource Options o o o e e

39.420theroptions L e e
395 AUTHOR

40 Help

41 Version

42 GNU GENERAL PUBLIC LICENSE

Bibliography

Index

253

255
255
255
255
255
255

257
257
257
257
258
258
258
258

259

261

263

269

27

Generated by Doxygen

Chapter 1

Preface

This is the user manual for the Model Railroad system. It is a "work in progress" and | will be adding chapters as | write
the various self-contained "main programs".

Preface

Generated by Doxygen

Chapter 2

Introduction

2.1

How this manual is organized.

This manual is broken up into chapters, one or two for each "main program”. ' These chapters are:

Chapter Universal Test Program Reference documents the Universal Test program. This program is part of the
CMRY/I (Chubb) library and is used to test CMR/I nodes.

Chapter OpenLCB Program Reference documents the OpenLCB program. This program implements a dianostic
program for LCC networks, and includes an event logger, event injector, and memory configuration tools (both
raw hex and CDI).

Chapter OpenLCB Daemons (Hubs and Virtual nodes) documents the OpenLCB daemon programs. This in-
cludes both the Hub Daemons and the Virtual Node Daemons. The Hub Daemons implement virtual networks
over Tcp/lp. The Virtual Node Daemons implement LCC nodes as processes running on a host computer.

Chapter Azatrax Test Programs Reference documents the Azatrax Test programs. These programs are part of
the Azatrax library are are used to test Azatrax USB modules

Chapter XPressNet Throttle documents the XPressNet Throttle program. This program is part of the XPressNet
library and is a simple GUI program that implements the functionallity of the DCC control unit (aka a throttle).

Chapter Generic Throttle documents the Generic Throttle program. This program implements the functionallity of
a generic throttle. It can be used as the basis for a DC or DCC control unit or throttle, using a specific control
library.

Chapters Time Table (V2) Tutorial and Time Table (V2) Reference document the Time Table (V2) program. This
program is used to create employee timetables.

Chapters Freight Car Forwarder (V2) Tutorial and Freight Car Forwarder (V2) Reference document the Freight
Car Forwarder (V2) program. This program is used to create switch lists for freight car forwarding.

Chapters Resistor Program Reference and LocoPull Program Reference document the calculator scripts, Resis-
tor and LocoPull, that are available to help model railroaders perform some common calculations.

Chapter Camera Programs Reference documents the camera scripts. These scripts perform various camera
scene calculations that are useful for model railroaders.

"The various programming libraries are described in the programming guides|[4].

Introduction

Chapters Dispatcher Tutorial, Dispatcher Reference, and Dispatcher Examples document the automated dis-
patcher program.

Chapter SatelliteDaemon documents the daemon for using satellite computers.
Chapter raildriverd documents the daemon program for the RailDriver control stand console.
Chapter OpenLCB Tcp/Ip Hub Server documents the daemon program for the binary OpenLCB over Tcp Hub.

Chapter OpenLCB GridConnect Tcp/lp Hub Server documents the daemon program for the OpenLCB Grid«
Connect over Tcp Hub.

Chapter OpenLCB MRD2 Node documents the daemon program for the OpenLCB interface to the Azatrax MRD2
USB connected IR detectors.

Chapter OpenLCB PiGPIO node documents the daemon program for the OpenLCB interface to the Raspberry
PI's GPIO pins.

Chapter OpenLCB Virtual Track Circuits node documents the daemon program for the OpenLCB Virtual Track
Circuits.

Chapter OpenLCB Logic node documents the daemon program for the OpenLCB Logic module.

Chapter OpenLCB Acela Node documents the daemon program for the CTI Acela.

Generated by Doxygen

Chapter 3

Universal Test Program Reference

The Universal Test program is used to test the I/O ports on a USIC, SUSIC, or SMINI node.
It is a port of the universal test program that is shown in [2] and [3].

3.1 Main GUI Elements

3.1.1 Main Window

The main window upon start up looks like this:

—|Universal Test Program for Serial CAMRI Mof | |

File Edit WView Options Actions Help

Port: I

Baudl:

Retry Count:

State:

Hode Type: USIC |

USIC Delay: 0 =

Display Delay Factor: |100 -
c -

Input Filter Delay: 0 -

Figure 3.1 The main window of the Universal Test Program

6 Universal Test Program Reference

The node type and initialization factors can be set. The Display Delay Factor is the number of hundredths of seconds
between bit tests. The default value of 100 means a 1 second delay between output bits. The Input Filter Delay is the
number of hundredths of seconds between bit tests for the input port (wraparound) test. The default value of 0 means
to test as fast as possible (the program will stop if there is an error).

3.1.2 Open New Port

The New menu item on the File menu opens the serial port (/dev/ttySn) the Chubb node is connected to and set the
baud rate and retry count, as shown here:

fdevitty sy
3600
Retry Cuunt:|3nnnn

RILI NN

‘ Open | Cancel |

Figure 3.2 The Open New Port dialog box of the Universal Test Program

The Open menu item on the File menu opens the previously open port (if the port is currently open, it is closed first).
The board at UA 0 is then initialized. For USIC and SUSIC cards, it is presumed that the backplane contains just one
output card (in the first slot) for output testing, and one each output and input card for the wraparound test (output card
in the first slot and the input card in the second slot).

3.2 Tests

There are two tests available: the output port test, which tests an output port card and the wraparound test, which tests
an input port card using an output port card. The output card test uses an output card LED test plug in and lights up
one LED at a time. The wraparound uses the wraparound cable to connect an input card to an output card and writes
bit values to the output card and reads these values on the input card and compares what was written with what was
read. These tests are selected from the Actions menu.

3.2.1 Test Output Card

The output card test displays the dialog box shown here:

Generated by Doxygen

3.2 Tests 7

A B [
v vvvvvvvvivy ® v vy v vy v v v v v v

Cancel Jl

Figure 3.3 The Output Card Test Dialog Box

The lit up indicator on the dialog box should match a corresponding LED on the output card LED test plug. The test is
repeated until canceled.

3.2.2 Wraparound Test

The wraparound test displays the dialog box shown here:

Cancel ﬁ

Figure 3.4 The Wraparound Test Dialog Box

The hexadecimal numbers represent the bit pattern written to the output card. These values are read back from the
input card and compared. If there is a difference, the test stops and displays the error bit pattern.

Generated by Doxygen

Universal Test Program Reference

Generated by Doxygen

Chapter 4

OpenLCB Program Reference

The OpenLCB Program is used for configuring OpenLCB nodes and for testing an OpenLCB network. It can also
manage a Layout Control Database, which can be used by the Offline LCC Node Editor and Dispatcher (see Dispatcher
Reference manual) programs.

4.1 Startup

When the OpenLCB program starts it connects as a OpenLCB node to a network of OpenLCB nodes. This network
could be over a CAN bus network or it could be over an Ethernet network using Tcp/lp, or using some other form of
networked interconnection. It could also use different interconnection network technologies.

4.1.1 Command Line Options

The OpenLCB program takes some command line options that define how it will connect to other OpenLCB nodes. The
first thing that is needed is the constructor class for the transport layer that will be used. This is the layer that is the
software driver for the specific wire protocol layer that will be used. Next are the 1/O options used by that constructor.
Usually this is the name of the I/O device or other information needed to connect to the device. It might also include any
additional connection information like the node identification.

These command line options are:

+ -transportname The name of the transport constructor. A shell wildcard is allowed (but needs to be quoted or
escaped).

« -listconstructors Print a list of available constructors and exit.

* -help Print a short help message and exit.

Additional options, specific to the transport constructor can also be specified.

10 OpenLCB Program Reference

4.1.2 GUI Startup

If the command line options are not specified or not fully specified, the program uses dialog boxes to gather the neces-
sary options it needs to connect. The first dialog box selects the transport constructor to use. It looks like this:

Cnngtructur:|ﬁrid Connect CAN over US |

Select | Cancel ‘

|
Figure 4.1 OpenLCB Transport Selection Dialog

This dialog box contains a drop down menu of the available (known) transport layer constructors, along with buttons to
to either select the transport constructor or to cancel the process.

After selecting the transport constructor, the options for the transport constructor are selected with a constructor specific
dialog box. The dialog box for the Grid Connect CAN over USBSerial one looks like this:

Port:|/dev/ttyACMO
Node ID:|[]5:[]1:[11:[]1:22:[][]

Open | Cancel |

|

Figure 4.2 Grid Connect CAN over USBSerial Options Dialog

This dialog box selects the serial port device name and the Node ID to use for this connection. There are buttons to
open the connection or to cancel the operation.

Once the transport constructor and its options are selected the program starts and displays the main window.

4.2 Main GUI Elements

The main window of the application contains a list of nodes on the network(s) it is connected to. This looks like this:

Generated by Doxygen

4.2 Main GUI Elements 11

File Edit View Options Help

* 05:01:01:01:22:00
> 02:01:57:00:00:1B

—

Figure 4.3 OpenLCB Main Window, with the node trees closed

Each node is listed by Node ID. The node trees can be opened to reveal both the simple node information as well as the
supported protocols, as shown here:

Generated by Doxygen

12 OpenLCB Program Reference

=l r ("

Eile Edit View Options Help

[05:01:01:01:22:00
— 02:01:57:00:00:1B
— Simple Node Info
Manfacturer: RR-Cirkits
Model: Tower-LCC
Hardware Version: Rev-D
Software Version: B-3
— Protocols Supported
Simple
Datagram
Memory Configuration
Ewent Exchange
Teach [Learn
Simple Node Information
cDl

/d

Figure 4.4 OpenLCB Main Window, with the node trees opened

The node information tree contains leaf nodes containing information about the node, including the name of its manu-
facturer, its model, and it hardware and software (firmware) version numbers. Sometimes nodes can be assigned user
supplied names and descriptions. This information is also displayed.

The Memory Configuration and CDI protocol items can be clicked to open up configuration tools.

4.2.1 Configuration Tools

There are two configuration tools available. A simple memory read/write tool and a structured configuration tool that
uses a GUI generated from the CDI information supplied by the node itself.

4.2.1.1 Memory Configuration Options

The simple memory read/write tool provides a map of what sorts of memory is available to be configured. This dialog
box looks like this:

Generated by Doxygen

4.2 Main GUI Elements 13

Nede 1D:|02:01:57:00:00:1B
Unaligned Reads supported.
Unaligned Writes supported.
Read from address space 0xFC available.
Read from address space 0xFB available.
1 byte writes.
2 byte writes.
Write Lengths:[0xF2 4 byte writes.
64 byte writes.
Arbitary write of any length.
Highest address space:|FF
Lowest address space:|3F

Available Commands:|0x6C00

Figure 4.5 Memory Configuration Options Display Dialog Box

This dialog box displays the available commands bitmap, both in hex and with the textual description of the on bits. It
does the same for the write lengths. It also shows the highest and lowest memory spaces and if there is a name, it
displays that too.

4.2.1.2 Configuration R/W Tool

The simple memory read/write tool is just a simple tool that reads and writes a block of up to 64 bytes of memory. The
tool looks like this:

Read:[3C 3F 78 6D 6C 20 76 65 72 73 69 6F 6E 3D 27 31 2E 30 27 3F 3E 3C 63 64 69 20 78 6D 6C 6E
Write:|
Count:[40

Address:000000
5pace:|CDI

Figure 4.6 Memory Read/Write Configuration tool

This dialog box displays a block of memory read back as pairs of hex digits. It has an entry area to enter sequence of
bytes in hex to be written to the node's memory. There is a space for the count, the starting address, and a drop down
menu of possible spaces to read from or write to. There are buttons to close, read, or write at the bottom.

4.2.1.3 CDI Configuration Tool

The other memory configuration tool uses the node supplied XML coded CDI to define the structure of the node's
configuration memory. It creates a node specific configuration window. Here is the one created for a RR-Cirkits Tower-
LLC node:

Generated by Doxygen

14

OpenLCB Program Reference

i Eile Edit

Identification

]

Man ufacturer‘RR—CirKits

Model Tower-LCC

Hardware Version|rev—D

Software Versionl&3

Node Identiﬁcation]
Your user name and description for this node

Node Nam
|

Write ‘

Node Description

Read ‘ Write ‘

CHANNELS | LOGIC | TRACK CIRCUITS |
Each channel controls one input/output line.

Channel 1]Channelz }Channel:i }Channel4 Channel 5 | Channel 6 | Channel 7 | Channel 8 | Channel 9]Channel 10 | Channe

o
rLine description

Read | Write |

(~Output Function

|Nu Function ﬂ
Read | Write |

Input Function

|Disabled =]
Read | Write |

~Delay

Delay time values for blinks, pulses, debounce.

Interval 1 | Interval 2 |
Delay Time (1-60000).
=]
o =

t

Y

Figure 4.7 A CDI-based configuration screen for a RR-Cirkits Tower-LLC node

The generated configuration editor is a generated configuration tool customized for the selected node. All of the config-

uration memory locations are labeled and organized for easy access.

4.2.2 Event Tools

In addition to configuring memory, the OpenLCB can be used to manually generate event reports and to monitor the
network for event production. Actuators and sensors can be tested for proper operation.

4.2.21 Send Event Tool

Under the File menu there is a Send Event menu item. This menu item pops up the send event dialog box, which

looks like:

Generated by Doxygen

4.2 Main GUI Elements 15

Event 1D:(00.00.00.00.00.00.00.00

Close ‘ Send

4

Figure 4.8 Send Event Dialog Box

This dialog box can be used to send events manually to test node consumption of the sent events.

4.2.2.2 Received Events

Additionally, if a node on the network generates an event, the OpenLCB program will display the event in a dialog box
like this:

Event 1D:(02.01.57.00.00.1B.00.36

Close

Figure 4.9 Event Received popup dialog box

Generated by Doxygen

16

OpenLCB Program Reference

Generated by Doxygen

Chapter 5

OpenLCB Daemons (Hubs and Virtual nodes)

A number of OpenLCB daemons are provided by the Model Railroad System. These daemons provide operational
OpenLCB functionallity, including providing hubs and gateways for both real physical nodes and virtual nodes, along
with several virtual nodes.

5.1 Hub Daemons

The Hub Daemons ' create a virtual "wire" that connects multiple virtual nodes. Each node is a separately running
process that has connected to the daemons network port. The hub deamon reads LCC messages from each of its
connections and then writes those messages out to one (if it is specificly addressed) or all (if it is a broadcast message)
of its connections. It does not write the message back out to the connection the message came from. It maintains a
routing table that maps source addresses (or aliases) with source connections. Hub deamons are configured from their
command line. Mostly this is the address to bind the port to and the port to bind (listen on). By default the hub deamons
bind only to localhost, the loopback network device. This means that only virtual nodes running on the local machine
can connect and the resultant network is "private" and local to the local machine. Optionally, the bind host (-host) can
be set to 0.0.0.0. This causes the daemon to bind to all available network interfaces and make itself generally available
to the whole network. 2

There are two hub daemons that implement a OpenLCB network over Tcp/lp and connect CAN busses connected to
different host computers connected via Tcp/Ip over Ethernet. These daemons are:

* OpenLCB Tcp/lp Hub Server The OpenLCBTcpHub daemon implememts the binary OpenLCB messaging proto-
col over Tcp/Ip.

* OpenLCB GridConnect Tcp/lp Hub Server The OpenLCBGCTcpHub daemon implememts the OpenLCB mes-
saging using the GridConnect protocol over both Tcp/lp and using the CAN Bus over a USB/Serial connection.

Both hub daemons implement a OpenLCB network over Tcp/Ip, although using different message formats. Both also
take a common set of command line arguments. The common command line arguments define the host ports and
devices to bind sockets to. The GridConnect hub can also connect to both physical CAN busses (over [USB] serial
ports) and other OpenLCB network hubs over Tcp/lp. The daemons run non-interactively and log their activity to a log
file.

"In UNIX usage, a daemon is a non-interactive process running in the background, usually (but not always) presenting some sort of connection
API (like a network socket) for other processes to connect to as a way of aquiring some sort of service.

2|f the machine has a network interface that is "public facing", this would make the daemon available on the public Internet. You should be careful,
since the LCC system provides no partitular security features.

18 OpenLCB Daemons (Hubs and Virtual nodes)

5.2 Virtual Nodes

There are several virtual nodes that implement OpenLCB nodes to provide useful functions. These daemons are:

» EventExchange node for Azatrax MRD2 boards. The OpenLCB_MRD2 daemon implememts an OpenLCB node
that implements the EventExchange protocol for Azatrax MRD2 boards.

+ EventExchange node for Raspberry Pi GPIO pins. The OpenLCB_PiGPIO daemon implememts an OpenLCB
node that implements the EventExchange protocol for Raspberry Pi GPIO pins.

» EventExchange node for MCP23008 GPIO pins. The OpenLCB_PiMCP23008 daemon implememts an Open«
LCB node that implements the EventExchange protocol for the GPIO pins on a MCP23008 12C port expander
connected to a Raspberry Pi.

» EventExchange node for MCP23017 GPIO pins. The OpenLCB_PiMCP23017 daemon implememts an Open«
LCB node that implements the EventExchange protocol for the GPIO pins on a MCP23017 12C port expander
connected to a Raspberry Pi.

» EventExchange node for MCP23017 as signal heads. The OpenLCB_PiMCP23017_signal daemon implememts
an OpenLCB node that implements the EventExchange protocol for the GPIO pins on a MCP23017 12C port
expander connected to a Raspberry Pi. This version groups the pins into signal heads and all pins are set to to
output mode.

» EventExchange node for the quad signal head HAT. The OpenLCB_QuadSignal daemon implememts an Open«
LCB node that implements the EventExchange protocol for the MCP23017-based quad signal head HAT for the
Raspberry Pi. Each signal mast can have 1, 2, or 3 "heads". Each head has four "lamps" (unused lamps can be
set to "None"). For a given aspect, a lamp can be on, off, blink, or reverse blink.

» EventExchange node for a SPI connected MAX7221 Signal Driver. The OpenLCB_PiSPIMax7221 daemon im-
plememts an OpenLCB node that implements the EventExchange protocol for a SPI connected MAX7221 Signal
Driver board connected to a Raspberry Pi.

» EventExchange node for virtual track circuits. The OpenLCB_TrackCircuits daemon implememts an OpenLCB
node that implements virtual track circuit messaging logic using OpenLCB Events.

» EventExchange node for logic blocks. The OpenLCB_Login daemon implememts an OpenLCB node that imple-
ments logic blocks using OpenLCB Events.

» EventExchange node for a CTl Acela network. The OpenLCB_Acela daemon implememts an OpenLCB node
that implements the EventExchange protocol for a CTIAcela network.

» EventExchange node for a C/MRI network. The OpenLCB_CMRI daemon implememts the EventExchange pro-
tocol for a C/MRI network.

All of these programs normally run as non-interactive daemon processes and use a configuration file in XML format to
define the detailed operation of the programs. This configuration file can either be hand edited or can be edited by the
programs themselves using the specific GUI configuration editor built-in to each program.

Additionally, the Dispatcher program can generate Event Exchange based CTC panel programs that connects to a
OpenLCB network as nodes and produces events in response to control elements and consumes events to update track
work state and control element indicators.

Not only can these nodes interact with devices on a physical OpenLCB network (such as a CAN bus), but also with each
other over a virtual OpenLCB network or even both at the same time.

Generated by Doxygen

5.2 Virtual Nodes 19

5.2.1 Common Node Configuration

All of the Virtual Nodes have these common configuration fields:

» An identification section, containing fields for the user supplied name and description for the node. These are free
form text fields and can contain a name and description of the node.

A transport section, containing fields for a transport constructor and options for the transport constructor. There
are presently three transports. There is a Select button next to the constructor field to select the transport to use.
The options for the transport constructor can be selected with the Select button next to the transport options field.
The four transports are:

CANGridConnectOverUSBSerial: Grid Connect CAN over USB Serial

CANGridConnectOverTcp: Grid Connect CAN over Tcp

CANGridConnectOverCANSocket: Grid Connect CAN over CAN Socket

OpenLCBOverTcp: OpenLCB over Tcp (binary)

5.2.2 EventExchange node for Azatrax MRD2 boards.

The OpenLCB_MRD2 daemon is used to tie one or more USB connected Azatrax MRD2 boards to an OpenLCB
network, tying event production to the Sense and Latch inputs of each defined connected device and, for relay equiped
boards, event consumption to the Channel 1 and Channel 2 outputs of each defined connected device.

In addition to the Common Node Configuration fields the OpenLCB_MRD2 daemon has a field for a polling interval in
miliseconds, defaulting to 500. This is the interval between polls of the MRD2 devices. Then for each device there is a
tab containing these fields:

« description A textual description of the device. This could be the name of the block it senses.
« serial number The serial number of the device. This is printed on a sticker attached to the device.
+ sense 1 on The event to send when sense 1 is activated.

» sense 1 off The event to send when sense 1 is deactivated.

» sense 2 on The event to send when sense 2 is activated.

+ sense 2 off The event to send when sense 2 is deactivated.

+ latch 1 on The event to send when latch 1 is activated.

« latch 1 off The event to send when latch 1 is deactivated.

+ latch 2 on The event to send when latch 2 is activated.

« latch 2 off The event to send when latch 2 is deactivated.

» set chan 1 The event that triggers setting channel 1.

« set chan 2 The event that triggers setting channel 2.

Generated by Doxygen

20 OpenLCB Daemons (Hubs and Virtual nodes)

5.2.2.1 XML Schema for configuration files

<?xml version="1.0" ?>
<?xml-stylesheet href="schema2xhtml.xsl" type="text/xsl" ?>
<!—=-= XML Schema for OpenLCB_MRD2 configuration files —-->
<xs:schema version="OpenLCB_MRD2 1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<xs:element name="OpenLCB_MRD2" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the configuration container for the OpenLCB_MRD2 daemon.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="transport" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This defines the transport to use for this node.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="constructor" minOccurs="1" maxOccurs="1" />
<xs:element name="options" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="identification" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the node identification section.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="name" minOccurs="0" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType></xs:complexType>
</xs:element>
<xs:element name="pollinterval" minOccurs="0" maxOccurs="1" />
<xs:element name="name" minOccurs="0" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
<xs:element name="device" minOccurs="0" maxOccurs="unbounded" >
<xs:annotation>
<xs:documentation>
This defines one device.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="serial" minOccurs="1" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
<xs:element name="senselon" minOccurs="0" maxOccurs="1" />
<xs:element name="senseloff" minOccurs="0" maxOccurs="1" />
<xs:element name="sense2on" minOccurs="0" maxOccurs="1" />
<xs:element name="sense2o0ff" minOccurs="0" maxOccurs="1" />
<xs:element name="latchlon" minOccurs="0" maxOccurs="1" />
<xs:element name="latchloff" minOccurs="0" maxOccurs="1" />
<xs:element name="latch2on" minOccurs="0" maxOccurs="1" />
<xs:element name="latch20ff" minOccurs="0" maxOccurs="1" />
<xs:element name="setchanl" minOccurs="0" maxOccurs="1" />
<xs:element name="setchan2" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>

Generated by Doxygen

5.2 Virtual Nodes 21

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

5.2.3 EventExchange node for Raspberry Pi GPIO pins.

The OpenLCB_PiGPIO daemon is used to tie one or more of a Raspberry Pi's GPIO pins to event production (input
pins) or event consumption (output pins).

In addition to the Common Node Configuration fields the OpenLCB_PiGPIO daemon has a field for a polling interval in
miliseconds, defaulting to 500. This is the interval between polls of the GPIO Pins. Then for each pin there is a tab
containing these fields:

« description A textual description of the pin.

* number The number of the pin.

* mode The mode of the pin, one of disabled, in, out, high, low.
» pinin 0 The event to send when the pin goes to 0.

» pinin 1 The event to send when the pin goes to 1.

+ pin out 0 The event to set the pin to 0.

» pin out 1 The event to set the pin to 1.

5.2.3.1 XML Schema for configuration files

<?xml version="1.0" 2>
<?xml-stylesheet href="schema2xhtml.xsl" type="text/xsl" ?>
<!—=-= XML Schema for OpenLCB_PiGPIO configuration files —->
<xs:schema version="OpenLCB_PiGPIO 1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<xs:element name="OpenLCB_PiGPIO" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the configuration container for the OpenLCB_PiGPIO daemon.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="transport" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This defines the transport to use for this node.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="constructor" minOccurs="1" maxOccurs="1" />
<xs:element name="options" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="identification" minOccurs="0" maxOccurs="1">
<xs:annotation>

Generated by Doxygen

22 OpenLCB Daemons (Hubs and Virtual nodes)

<xs:documentation>
This is the node identification section.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="name" minOccurs="0" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType></xs:complexType>
</xs:element>
<xs:element name="pollinterval" minOccurs="0" maxOccurs="1" />
<xs:element name="pin" minOccurs="0" maxOccurs="unbounded" >
<xs:annotation>
<xs:documentation>
This defines one pin.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="number" minOccurs="1" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
<xs:element name="mode" minOccurs="0" maxOccurs="1" />
<xs:element name="pinin0" minOccurs="0" maxOccurs="1" />
<xs:element name="pininl" minOccurs="0" maxOccurs="1" />
<xs:element name="pinoutO" minOccurs="0" maxOccurs="1" />
<xs:element name="pinoutl" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

5.2.4 EventExchange node for MCP23008 GPIO pins.

The OpenLCB_PiMCP23008 daemon is used to tie one or more of a MCP23008's GPIO pins to event production (input
pins) or event consumption (output pins). A MCP23008 is a 8 bit 12C port expander that can be connected to a Raspberry
Pi.

In addition to the Common Node Configuration fields the OpenLCB_PiMCP23008 daemon has a field for a polling
interval in miliseconds, defaulting to 500. This is the interval between polls of the GPIO Pins. There is also a field
containing the low 3 bits of the address of the MCP23008's 12C address (the default is 7). Then for each pin there is a
tab containing these fields:

« description A textual description of the pin.

* number The number of the pin.

» mode The mode of the pin, one of disabled, in, out, high, low.
 pinin 0 The event to send when the pin goes to 0.

» pinin 1 The event to send when the pin goes to 1.

+ pin out 0 The event to set the pin to 0.

+ pin out 1 The event to set the pin to 1.

Generated by Doxygen

5.2 Virtual Nodes

5.2.4.1 XML Schema for configuration files

<?xml version="1.0" ?>
<?xml-stylesheet href="schema2xhtml.xsl" type="text/xsl" ?>
<!-- XML Schema for OpenLCB_PiMCP23008 configuration files -->
<xs:schema version="OpenLCB_PiMCP23008 1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<xs:element name="OpenLCB_PiMCP23008" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the configuration container for the OpenLCB_PiMCP23008 daemon.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="transport" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This defines the transport to use for this node.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="constructor" minOccurs="1" maxOccurs="1" />
<xs:element name="options" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="identification" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the node identification section.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="name" minOccurs="0" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType></xs:complexType>
</xs:element>
<xs:element name="pollinterval” minOccurs="0" maxOccurs="1" />
<xs:element name="i2caddress" minOccurs="0" maxOccurs="1" />
<xs:element name="pin" minOccurs="0" maxOccurs="unbounded" >
<xs:annotation>
<xs:documentation>
This defines one pin.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="number" minOccurs="1" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
<xs:element name="mode" minOccurs="0" maxOccurs="1" />
<xs:element name="pinin0" minOccurs="0" maxOccurs="1" />
<xs:element name="pininl" minOccurs="0" maxOccurs="1" />
<xs:element name="pinout0" minOccurs="0" maxOccurs="1" />
<xs:element name="pinoutl" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Generated by Doxygen

24 OpenLCB Daemons (Hubs and Virtual nodes)

5.2.5 EventExchange node for MCP23017 GPIO pins.

The OpenLCB_PiMCP23017 daemon is used to tie one or more of a MCP23017's GPIO pins to event production (input
pins) or event consumption (output pins). A MCP23017 is a 16 bit 12C port expander that can be connected to a
Raspberry Pi.

In addition to the Common Node Configuration fields the OpenLCB_PiMCP23017 daemon has a field for a polling
interval in miliseconds, defaulting to 500. This is the interval between polls of the GPIO Pins. There is also a field
containing the low 3 bits of the address of the MCP23017's 12C address (the default is 7). Then for each pin there is a
tab containing these fields:

+ description A textual description of the pin.

* number The number of the pin.

+ mode The mode of the pin, one of disabled, in, out, high, low.
» pinin 0 The event to send when the pin goes to 0.

* pinin 1 The event to send when the pin goes to 1.

+ pin out 0 The event to set the pin to 0.

» pin out 1 The event to set the pin to 1.

5.2.5.1 XML Schema for configuration files

<?xml version="1.0" ?>
<?xml-stylesheet href="schema2xhtml.xsl" type="text/xsl" ?>
<!-- XML Schema for OpenLCB_PiMCP23017 configuration files -->
<xs:schema version="OpenLCB_PiMCP23017 1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<xs:element name="OpenLCB_PiMCP23017" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the configuration container for the OpenLCB_PiMCP23017 daemon.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="transport" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This defines the transport to use for this node.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="constructor" minOccurs="1" maxOccurs="1" />
<xs:element name="options" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="identification" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the node identification section.
</xs:documentation>
</xs:annotation>
<xs:complexType>

Generated by Doxygen

5.2 Virtual Nodes 25

<xs:sequence>
<xs:element name="name" minOccurs="0" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType></xs:complexType>
</xs:element>
<xs:element name="pollinterval" minOccurs="0" maxOccurs="1" />
<xs:element name="i2caddress" minOccurs="0" maxOccurs="1" />
<xs:element name="pin" minOccurs="0" maxOccurs="unbounded" >
<xs:annotation>
<xs:documentation>
This defines one pin.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="number" minOccurs="1" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
<xs:element name="mode" minOccurs="0" maxOccurs="1" />
<xs:element name="pinin0" minOccurs="0" maxOccurs="1" />
<xs:element name="pininl" minOccurs="0" maxOccurs="1" />
<xs:element name="pinoutO" minOccurs="0" maxOccurs="1" />
<xs:element name="pinoutl" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

5.2.6 EventExchange node for MCP23017 as signal heads.

The OpenLCB_PiMCP23017_signal daemon is used to tie groups of a MCP23017's GPIO pins into signal heads and
all pins are set to to output mode. A MCP23017 is a 16 bit 12C port expander that can be connected to a Raspberry Pi.

In addition to the Common Node Configuration fields the OpenLCB_PiMCP23017 daemon has a field containing the low
3 bits of the address of the MCP23017's 12C address (the default is 7). Then for each signal there is a tab containing
these fields:

« description A textual description of the signal.

* number The number of the first pin used by the signal.

+ ledcount The number of LEDs used by the signal.

» common Either anode or cathode to indicate if the LEDs are wired as common anode or common cathode.
+ zero or more Aspect tabs, containing:

— eventid The event ID for this aspect.

— bits The aspect's bit field as a binary number (letter B followed by 1s (on) and 0s (off).

Generated by Doxygen

26 OpenLCB Daemons (Hubs and Virtual nodes)

5.2.6.1 XML Schema for configuration files

<?xml version="1.0" ?>
<?xml-stylesheet href="schema2xhtml.xsl" type="text/xsl" ?>
<!—=-= XML Schema for OpenLCB_PiMCP23017_signal configuration files —-—>
<xs:schema version="OpenLCB_PiMCP23017_signal 1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<xs:element name="OpenLCB_PiMCP23017_signal" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the configuration container for the OpenLCB_PiMCP23017_signal daemon.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="transport" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This defines the transport to use for this node.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="constructor" minOccurs="1" maxOccurs="1" />
<xs:element name="options" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="identification" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the node identification section.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="name" minOccurs="0" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType></xs:complexType>
</xs:element>
<xs:element name="i2caddress" minOccurs="0" maxOccurs="1" />
<xs:element name="signal" minOccurs="0" maxOccurs="unbound">
<xs:annotation>
<xs:documentation>
This defines one signal.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="number" minOccurs="1" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
<xs:element name="ledcount" minOccurs="1" maxOccurs="1" />
<xs:element name="common" minOccurs="1" maxOccurs="1" />
<xs:element name="aspect"”" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="eventid" minOccurs="1" maxOccurs="1" />
<xs:element name="bits" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

Generated by Doxygen

5.2 Virtual Nodes 27

</xs:element>
</xs:schema>

5.2.7 EventExchange node for the quad signal head HAT.

The OpenLCB_QuadSignal daemon implememts an OpenLCB node that implements the EventExchange protocol for
the MCP23017-based quad signal head HAT for the Raspberry Pi. Each signal mast can have 1, 2, or 3 "heads". Each
head has four "lamps" (unused lamps can be set to "None"). For a given aspect, a lamp can be on, off, blink, or reverse
blink. In addition to the Common Node Configuration fields the OpenLCB_PiMCP23017 daemon has a field containing
the low 3 bits of the address of the MCP23017's 12C address (the default is 7). Then for each signal mast there is a tab
containing these fields:

+ description A textual description of the signal.
+ zero or more Aspect tabs, each containing:

— eventid The event ID for this aspect.
— name The name of the aspect.
— one or more Head tabs, each containing:

= four Lamp tabs, each containing:
- id The lamp id, one of None, H1-G, H1-Y, H1-R, H1-L, H2-G, H2-Y, H2-R, H2-L, H3-G, H3-Y, H3-R,
H3-L, H4-G, H4-Y, H4-R, or H4-L.
- effect The lamp effect, one of off, on, blink, or reverseblink.

5.2.7.1 XML Schema for configuration files

<?xml version="1.0" 72>
<?xml-stylesheet href="schema2xhtml.xsl" type="text/xsl" ?>
<!--= XML Schema for OpenLCB_PiMCP23017_signal configuration files —-->
<xs:schema version="OpenLCB_PiMCP23017_signal 1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<xs:element name="OpenLCB_PiMCP23017_signal" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the configuration container for the OpenLCB_PiMCP23017_signal daemon.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="transport" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This defines the transport to use for this node.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="constructor" minOccurs="1" maxOccurs="1" />
<xs:element name="options" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="identification" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>

Generated by Doxygen

28 OpenLCB Daemons (Hubs and Virtual nodes)

This is the node identification section.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="name" minOccurs="0" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType></xs:complexType>
</xs:element>
<xs:element name="i2caddress" minOccurs="0" maxOccurs="1" />
<xs:element name="mast" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="description" minOccurs="0" maxOccurs="1" />
<xs:element name="aspect" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xXs:sequence>
<xs:element name="eventid" minOccurs="1" maxOccurs="1" />
<xs:element name="name" minOccurs="1" maxOccurs="1" />
<xs:element name="head" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="lamp" minOccurs="4" maxOccurs="4" >
<xs:complexType>
<xs:sequence>
<xs:element name="id" minOccurs="1" maxOccurs="1" />
<xs:element name="effect" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

5.2.8 EventExchange node for a SPl connected MAX7221 Signal Driver.

The OpenLCB_PiSPIMax7221 daemon is used to implement upto 8 signal masts using a SPI connected MAX7221 LED
driver. Each digit of the MAX7221 corresponds to one signal mast and each segment of each digit corresponds to
one LED.

In addition to the Common Node Configuration fields the OpenLCB_PiSPIMax7221 daemon has a field to select the SPI
channel (0 or 1) and tabs for each signal (up to 8). Each signal has a signal number (1 through 8), a textual description,
and any number (at least one) of aspects. Each aspect contain an event id and an eight bit field defining the on (1) or
off (0) LEDS, typically top to bottom.

5.2.8.1 XML Schema for configuration files

<?xml version="1.0" 2>
<?xml-stylesheet href="schema2xhtml.xsl" type="text/xsl" ?>

Generated by Doxygen

5.2 Virtual Nodes 29

<!-— XML Schema for OpenLCB_PiSPIMax7221 configuration files -->
<xs:schema version="OpenLCB_PiSPIMax7221 1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<xs:element name="OpenLCB_PiSPIMax7221" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the configuration container for the OpenLCB_PiSPIMax7221
daemon.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xXs:sequence>
<xs:element name="transport" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This defines the transport to use for this node.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="constructor" minOccurs="1" maxOccurs="1" />
<xs:element name="options" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="identification" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the node identification section.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="name" minOccurs="0" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType></xs:complexType>
</xs:element>
<xs:element name="spichannel" minOccurs="0" maxOccurs="1" />
<xs:element name="signal" minOccurs="1" maxOccurs="8" >
<xs:annotation>
This defines one signal.
</xs:documentation>
<xs:complexType>
<xs:sequence>
<xs:element name="number" minOccurs="1" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
<xs:element name="aspect" minOccurs="1" maxOccurs="unbounded" >
<xs:complexType>
<xs:element name="eventid" minOccurs="1" maxOccurs="1" />
<xs:element name="bits" minOccurs="1" maxOccurs="1" />
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

5.2.9 EventExchange node for virtual track circuits.

The OpenLCB_TrackCircuits daemon is used to implement one or more virtual track circuits. Each track circuit can emit
a code event in response to an event and can emit an event in response to a code event, possibly prefixed with a Code

Generated by Doxygen

30 OpenLCB Daemons (Hubs and Virtual nodes)

1 Start event.

In addition to the Common Node Configuration fields the OpenLCB_TrackCircuits daemon has tabs for each track,
containing these fields:

 Description A textual description of the track

« Track Service Enabled or Disabled

» Command tabs Zero or more command tabs which map a received event to a track code.
» Transmit Group Base Event The track code will be added to this event.

» Receive Group Base Event This is the base track code reciever event.

« Code 1 Start Event The event to send when a Code 1 Start occur.

 Action tabs Zero or more action tabs which map an event to send when a track code received.

The track codes defined for transmitters and receivers are:

* None No track code.

+ Code7 Clear

* Code4 Advance Approach

* Code3 Approach Limited

* Code8 Approach Medium

* Code2 Approach

* Code9 Approach Slow

* Code6 Accelerated Tumble Down

* Code5_occupied Non-Vital (occupied)
* Code5_normal Non-Vital (normal)

* CodeM_failed Power/Lamp (failed)

* CodeM_normal Power/Lamp (normal)

5.2.9.1 XML Schema for configuration files

<?xml version="1.0" 7>
<?xml-stylesheet href="schema2xhtml.xsl" type="text/xsl" ?>
<!—— XML Schema for OpenLCB_TrackCircuits configuration files -->
<xs:schema version="OpenLCB_TrackCircuits 1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<xs:element name="OpenLCB_TrackCircuits" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the configuration container for the OpenLCB_TrackCircuits
daemon.
</xs:documentation>

Generated by Doxygen

5.2 Virtual Nodes

31

</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="transport" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This defines the transport to use for this node.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="constructor" minOccurs="1"
<xs:element name="options" minOccurs="1" maxOccurs="1"
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="identification"
<xs:annotation>
<xs:documentation>
This is the node identification section.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>

maxOccurs="1"

/>

minOccurs="0" maxOccurs="1">

<xs:element name="name" minOccurs="0" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="track"
<xs:annotation>
<xs:documentation>
This defines one track.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>

minOccurs="0" maxOccurs="unbounded" >

<xs:element
<xs:element
<xs:element

name="description" minOccurs="0" maxOccurs="1"
name="enabled" minOccurs="0" maxOccurs="1" />
name="transmitter" minOccurs="0"
maxOccurs="unbounded" >
<xs:complexType>
<xs:sequence>
<xs:element name="code" minOccurs="1" maxOccurs="1"
<xs:element name="eventid" minOccurs="1"
maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="transmitbaseevent"
maxOccurs="1" />
name="receivebaseevent"
maxOccurs="1" />
name="codelstartevent"
maxOccurs="1" />
name="receiver"
maxOccurs="unbounded"
<xs:complexType>
<xs:sequence>
<xs:element name="code" minOccurs="1"
<xs:element name="eventid"
maxOccurs="1"
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

minOccurs="0"
<xs:element minOccurs="0"
<xs:element minOccurs="0"

minOccurs="0"
>

<xs:element

maxOccurs="1"
minOccurs="1"

/>

/>

/>

/>

/>

/>

Generated by Doxygen

32 OpenLCB Daemons (Hubs and Virtual nodes)

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

5.2.10 EventExchange node for logic blocks.

The OpenLCB_Logic daemon is used to implement one or more logic blocks. Each logic can be standalone or part of a
mast or ladder group.

In addition to the Common Node Configuration fields the OpenLCB_Logic daemon has tabs for each logic block, con-
taining these fields:

+ Description A textual description of the track

» The Group Type, one of single (Single or last), mast (Mast Group), or 1adder (Ladder Group).
+ An event to set variable 1 true.

» An event to set variable 1 false.

» The logic function, one of and (V1 and V2), or (V1 or V2), xor (V1 xor V2), andch (V1 and V2 change), orch
(V1 or V2 change), then (V1 then V2), or t rue.

« An event to set variable 2 true.
« An event to set variable 2 false.

» The delay in miliseconds (0 means no delay).

Whether the delay is retriggerable.

» Four (4) action tabs, each with a delay flag and an event.

5.2.10.1 XML Schema for configuration files

<?xml version="1.0" 2>
<?xml-stylesheet href="schema2xhtml.xsl" type="text/xsl" ?>
<!-—= XML Schema for OpenLCB_Logic configuration files -—>
<xs:schema version="OpenLCB_Logic 1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<xs:element name="OpenLCB_Logic" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the configuration container for the OpenLCB_Logic
daemon.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="transport" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This defines the transport to use for this node.
</xs:documentation>
</xs:annotation>

Generated by Doxygen

5.2 Virtual Nodes

33

<xs:complexType>
<xs:sequence>

<xs:element name="constructor" minOccurs="1" maxOccurs="1" />
<xs:element name="options" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="identification" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the node identification section.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="name" minOccurs="0" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType></xs:complexType>
</xs:element>
<xs:element name="logic" minOccurs="0" maxOccurs="unbounded" >
<xs:annotation>
<xs:documentation>
This defines one logic block.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="description" minOccurs="0" maxOccurs="1" />
<xs:element name="grouptype" minOccurs="1" maxOccurs="1" />
<xs:element name="vlonevent" minOccurs="0" maxOccurs="1" />
<xs:element name="vloffevent" minOccurs="0" maxOccurs="1" />
<xs:element name="logicfunction" minOccurs="1" maxOccurs="1" />
<xs:element name="v2onevent" minOccurs="0" maxOccurs="1" />
<xs:element name="v2offevent" minOccurs="0" maxOccurs="1" />
<xs:element name="delay" minOccurs="0" maxOccurs="1" />
<xs:element name="retriggerable" minOccurs="0" maxOccurs="1" />
<xs:element name="actionldelay" minOccurs="0" maxOccurs="1" />
<xs:element name="actionlevent" minOccurs="0" maxOccurs="1" />
<xs:element name="action2delay" minOccurs="0" maxOccurs="1" />
<xs:element name="actionZevent" minOccurs="0" maxOccurs="1" />
<xs:element name="action3delay" minOccurs="0" maxOccurs="1" />
<xs:element name="action3event" minOccurs="0" maxOccurs="1" />
<xs:element name="action4delay" minOccurs="0" maxOccurs="1" />
<xs:element name="actiondevent" minOccurs="0" maxOccurs="1" />

</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>
</xs:schema>

5.2.11

EventExchange node for a CTl Acela network.

The OpenLCB_Acela daemon is used to tie a CTI Acela network to an OpenLCB network, tying event production to the
inputs (sensors) and outputs (controls and signals) connected to a CTl Acela network.

In addition to the Common Node Configuration fields the OpenLCB_Acels daemon has tabs for each Control, Signal, or
Sensor. Each type has a numerical address and a textual description.

You will want to read the "The Acela Network Bridge Programmer's Guide" for an explaination of some of the terminolgy

used here.

In addition each Control has these fields:

Generated by Doxygen

34 OpenLCB Daemons (Hubs and Virtual nodes)

+ Pulse Width in 10ths of a second. Used with the Pulse on and Pulse off events.
« Blink Period in 10ths of a second. Used with the Blink and Reverse Blink events.
+ Activate eventid

+ Deactivate eventid

» Pulse on eventid

+ Pulse off eventid

+ Blink eventid

* Reverse Blink eventid

In addition each Signal has these fields:

+ Signal command, one of Signal2, Signal3, or Signal4. Signal2 uses two consequential outputs and assumes a bi-
color led (red/green) and simulates yellow Signal3 uses three consequential outputs and assumes three descrete
lamps or leds. Signal4 uses four consequential outputs and assumes four descrete lamps or leds.

» Plus zero or more Aspect tabs. Each Aspect tab has a event field and an argument list for a signal. This 2 or 3

elements for Signal2, three elements for Signal3 and four elements for Signal4. Eacl element defines one lamp
or led and is one of: on, off, blink, revblink.

There are also three common fields for all signals:

+ Signal blink rate in 10ths of a second.
* Yellow Hue

+ Signal brightless

In addition each sensor has these fields:

« Filter Threshold
« Filter Select

* Polarity

» The on eventid

* The off eventid

Generated by Doxygen

5.2 Virtual Nodes 35

5.2.11.1 XML Schema for configuration files

<?xml version="1.0" ?>
<?xml-stylesheet href="schema2xhtml.xsl" type="text/xsl" ?>
<!-=- XML Schema for OpenLCB_Acela configuration files -—>
<xs:schema version="OpenLCB_Acela 1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<xs:element name="OpenLCB_Acela" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the configuration container for the OpenLCB_Acela daemon.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="transport" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This defines the transport to use for this node.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="constructor" minOccurs="1" maxOccurs="1" />
<xs:element name="options" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="identification" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the node identification section.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="name" minOccurs="0" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType></xs:complexType>
</xs:element>
<xs:element name="acelaport" minOccurs="1" maxOccurs="1" />
<xs:element name="blinkrate" minOccurs="0" maxOccurs="1" />
<xs:element name="yellowhue" minOccurs="0" maxOccurs="1" />
<xs:element name="brightness" minOccurs="0" maxOccurs="1" />
<xs:element name="control" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>
This defines one Control.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="address" minOccurs="1" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
<xs:element name="pulsewidth" minOccurs="0" maxOccurs="1" />
<xs:element name="blinkperiod" minOccurs="0" maxOccurs="1" />
<xs:element name="activate" minOccurs="0" maxOccurs="1" />
<xs:element name="deactivate " minOccurs="0" maxOccurs="1" />
<xs:element name="pulseon " minOccurs="0" maxOccurs="1" />
<xs:element name="pulseoff " minOccurs="0" maxOccurs="1" />
<xs:element name="blink " minOccurs="0" maxOccurs="1" />
<xs:element name="revblink" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="signal" minOccurs="0" maxOccurs="unbounded">

Generated by Doxygen

36 OpenLCB Daemons (Hubs and Virtual nodes)

<xs:annotation>
<xs:documentation>
This defines one Signal.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="address" minOccurs="1" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
<xs:element name="pulsewidth" minOccurs="0" maxOccurs="1" />
<xs:element name="aspect" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="eventid" minOccurs="0"
maxOccurs="1" />
<xs:element name="arglist" minOccurs="0"
maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="sensor" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>
This defines one Sensor.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="address" minOccurs="1" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
<xs:element name="filterthresh" minOccurs="0"
maxOccurs="1" />
<xs:element name="filterselect" minOccurs="0"
maxOccurs="1" />
<xs:element name="polarity" minOccurs="0" maxOccurs="1" />
<xs:element name="onevent" minOccurs="0" maxOccurs="1" />
<xs:element name="offevent" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

5.2.12 EventExchange node for a C/MRI network.

The OpenLCB_CMRI daemon implememts the EventExchange protocol for a C/MRI network, tying event production to
the inputs and outputs connected to a C/MRI network.

In addition to the Common Node Configuration fields the OpenLCB_CMRI has these global fields:

+ port The serial port the C/MRI network is on.
* baud The baud rate to use.
* maxtries The maximum number of retries. Then there are zero or more node tabs with these fields:

« description The description of the node.

Generated by Doxygen

5.2 Virtual Nodes

37

+ address This is the address of the node.

* type The type of card (SUSIC, USIC, or SMINI).

» cardmap The card map list (SUSIC or USIC).

+ yellowmap The yellow map list (SMINI).

» numberofyellow The number of yellows (SMINI).

« inputports The number of 8-bit input ports.

+ outputports The number of 8-bit output ports.

+ delay The delay value to use (older SUSIC and USIC nodes).

* zero or more input tabs:

eventid The event to produce.

byte The byte (port) offset.
mask The mask value.

comp The comparison operator (== or |=).

value The value to compare to.
* zero or more output tabs:

eventid The event to consume.

byte The byte (port) offset.

mask The mask value.

value The value to write.

5.2.12.1 XML Schema for configuration files

<?xml version="1.0" ?>
<?xml-stylesheet href="schema2xhtml.xsl" type="text/xsl" ?>
<!-— XML Schema for OpenLCB_Acela configuration files --—>
<xs:schema version="OpenLCB_Acela 1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<xs:element name="OpenLCB_Acela" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the configuration container for the OpenLCB_Acela daemon.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="transport" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This defines the transport to use for this node.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="constructor" minOccurs="1" maxOccurs="1"
<xs:element name="options" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>

/>

Generated by Doxygen

38 OpenLCB Daemons (Hubs and Virtual nodes)

<xs:element name="identification" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
This is the node identification section.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="name" minOccurs="0" maxOccurs="1" />
<xs:element name="description" minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:complexType></xs:complexType>
</xs:element>
<xs:element name="port" minOccurs="1" maxOccurs="1" />
<xs:element name="baud" minOccurs="1" maxOccurs="1" />
<xs:element name="maxtries" minOccurs="1" maxOccurs="1" />
<xs:element name="node" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="description" minOccurs="1" maxOccurs="1" />
<xs:element name="address" minOccurs="1" maxOccurs="1" />
<xs:element name="type" minOccurs="1" maxOccurs="1" />
<xs:element name="cardmap" minOccurs="0" maxOccurs="1" />
<xs:element name="yellowmap" minOccurs="0" maxOccurs="1" />
<xs:element name="numberofyellow" minOccurs="0" maxOccurs="1" />
<xs:element name="inputports" minOccurs="1" maxOccurs="1" />
<xs:element name="outputports" minOccurs="1" maxOccurs="1" />
<xs:element name="delay" minOccurs="1" maxOccurs="1" />
<xs:element name="input" minOccurs="0" maxOccurs="unbounded" >
<xs:complexType>
<xs:sequence>
<xs:element name="eventid" minOccurs="1" maxOccurs="1" />
<xs:element name="byte" minOccurs="1" maxOccurs="1" />
<xs:element name="mask" minOccurs="1" maxOccurs="1" />
<xs:element name="comp" minOccurs="1" maxOccurs="1" />
<xs:element name="value" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="output" minOccurs="0" maxOccurs="unbounded" >
<xs:complexType>
<xs:sequence>
<xs:element name="eventid" minOccurs="1" maxOccurs="1" />
<xs:element name="byte" minOccurs="1" maxOccurs="1" />
<xs:element name="mask" minOccurs="1" maxOccurs="1" />
<xs:element name="value" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Generated by Doxygen

Chapter 6

Offline LCC Node Editor Reference

This program makes use of the CDI Configuration Tool to edit LCC Node backup configuration files without being con-
nected to a LCC network.

6.1 Command Line Parameters and Options

This program takes some optional options and at least one required parameter.

6.1.1 Options

6.1.2 X11 Resource Options

+ -colormap: Colormap for main window

« -display: Display to use

« -geometry: Initial geometry for window

» -name: Name to use for application

» -sync: Use synchronous mode for display server
+ -visual: Visual for main window

+ -use: Id of window in which to embed application

6.1.2.1 Other options

* -help Print a short help message and exit.

 -debug Turn on debug output.

40 Offline LCC Node Editor Reference

6.1.3 Parameters

There is one required parameter, the file containing the CDI XML for the nodes to be edited. Additional parameters are
the config files to be edited.

6.2 Main GUI Elements

In addition to editing LCC Node backup config files, this program also can manage a Layout Control Database, just
like the OpenLCB (see OpenLCB Program Reference) and Dispatcher (see Dispatcher Reference) programs. lis File
menu contains items to load and save a layout control database, and its Edit menu contains items to create layout
control elements. See the OpenLCB Program Reference documentation for info on these menu items. Additionally, the
Open item on the File menu will open additional config files to edit.

The main GUI contains the table of Layout Control elements in the currently loaded layout control database, along with
edit boxes for these elements.

Generated by Doxygen

Chapter 7

Layout Control Database

This database is an XML file containing a mapping of Layout Control elements and LCC Event Ids. The database
contains turnouts, blocks, signals, sensors, and controls. The LayoutDB to JMRI Tables converter program can convert
a Layout Control Database to a JMRI Table file.

7.1 Turnouts

The turnout tag describes a turnout. Child tags include:

» name This holds the name of the turnout.
» motor This holds the motor event ids (consumed by the turnout). Under the motor tag are two child tags:

— normal This holds the normal event id.

— reverse This holds the reverse event id.
* points This holds the points sense event ids (produced by the turnout). Under the points tag are two child tags:

— normal This holds the normal event id.

— reverse This holds the reverse event id.

7.2 Blocks

The block tag describes a block. Child tags include:

» name This holds the name of the block.
* occupied This holds the (produced) occupied event id,

* clear This holds the (produced) clear event id,

42 Layout Control Database

7.3 Signals

The signal tag describes a signal. Child tags include:

» name This holds the name of the signal.
+ aspect This holds an aspect of the signal. A signal can have zero or more of these tags. Child tags include:

— name This holds the name of the aspect.
— event This holds the (consumed) event id to set the aspect.

— look This contains the look of the aspect, typicaly a list of colors.

7.4 Sensors

The sensor tag describes a generic sensor. Child tags include:

» name This holds the name of the sensor.
+ on This holds the (produced) event id when the sensor goes on (is activated).
» of f This holds the (produced) event id when the sensor goes off (is

+ deactivated).

7.5 Controls

The control tag describes a generic control. Child tags include:

* name This holds the name of the sensor.
» on This holds the (consumed) event id to turn the control on (activate).

» of f This holds the (consumed) event id to turn the control off (deactivated).

Generated by Doxygen

Chapter 8

Azatrax Test Programs Reference

These programs can be used to test the various boards made by Azatrax. These include the MRD2-S and MRD2-U
boards, which are infrared sensor units with USB interfaces. The MRD2-S includes relays for operating switch motors,
power relays, or signals. The MRD2-U contain just a pair of detectors. Azatrax also makes the SR4 board, which is
a quad set of solid state relays. Also planned are boards to control stall motor type switch machines and signal driver
boards.

8.1 MRD Test Program Reference

This program is the basic test program and can be used to test basic functionality of either a MRD2-S or MRD2-U unit.
There are buttons for each of the commands that can be sent, plus a display area showing the current state data for
the unit.

8.1.1 Synopsis

MRDTest [X11l Resource Options]

This program takes no parameters.

8.1.2 Main GUI Screen

The MRDTest main GUI is shown here:

44 Azatrax Test Programs Reference

File Edit View Options Help |
Serial Number To open: 020000009
mmands
Set Channel 1 Set Channel 2

Clear Externally Changed

Disable External Enable External

Restore LEDs Identify 1 Identify 2 | Identify Both

Reset Stopwatch

Get Sense Data

Sense Data

Packet Count 1

Sense / Latch " Sense 1™ Sense 2 ™ Latch 1 ™ Latch 2
Has Relays? % Yes ™ No
Reset Status? ™ Yes & No
Stopwatch Ticking? ™ Yes # No
Externally Changed? " Yes & No
Allow External Changes? % Yes ™ No
Stopwatch: 0:00:00.00
Operating Mode: 52
Unit Serial Number: 020000009

/d

Figure 8.1 MRDTest Main GUI Screen

The upper half contains buttons to invoke each of the commands that the MRD-2 unit understands and the lower half
displays the unit's sense data.

8.2 MRD Sensor Loop Reference

This program loops, reading the unit sense data at 500 millisecond intervals, displaying the state of the Sense and Latch
bits, plus whether or not the stopwatch is ticking and the current stopwatch time value.

8.2.1 Synopsis

MRDSensorLoop [X11l Resource Options] sensorSerialNumber

This program takes one parameter, the serial number of the MRD2-S or MRD2-U unit to test. The program runs until
exited or until the MRD2-S MRD2-U unit is unplugged.

Generated by Doxygen

8.3 SR4 Test Program Reference 45

8.2.2 Main GUI Screen

The MRDSensorLoop main GUI is shown here:

File Edit View Options Help
Sense / Latch “ Sense 1™ Sense 2 Latch 1 ™ Latch 2
Stopwatch Ticking? ™ Yes # No
Stopwatch: 0:00:00.00

JJ

Figure 8.2 MRDSensorLoop Main GUI Screen

This screen shows the current state of the MRD2 unit. It is updated every 500 miliseconds (.5 seconds).

8.3 SR4 Test Program Reference

This program is the basic test program and can be used to test basic functionality of a SR4 unit. There are buttons for
each of the commands that can be sent, plus a display area showing the current state data for the unit.

8.3.1 Synopsis

SR4Test [X11l Resource Options]

Th9iis program takes no parameters.

8.3.2 Main GUI Screen

The SR4Test main GUI is shown here:

Generated by Doxygen

46 Azatrax Test Programs Reference

File Edit View Options ﬂelp‘
Serial Number To open: 040000008 »| Rescan

mmands-

Blink Relays W Output 1 W Qutput 2 M Qutput 3 M Qutput 4|4hz =
Turn Relays Off | Output 1 ™ Output 2 W Output 3 W Output 4

Turn Relays On W OQutput 1 W Qutput 2 M Qutput 3 W Qutput 4

Pulse Relays M Output 1 W Qutput 2 M Qutput 3 M Output 4 |£]

14l

Restore LEDs Identify 1 |

Enable/Disable Inputs (W Input 1 M Input2 M Input 3 M Input 4

Get 5ense Data l
Sense Data
Packet Count 35
Relay Status + Q1 +* Q2 * Q3 & Q4
Input sense, Latched) § 2 * [F] 14
Input sense, Live L 12 * [14
Input enabled + 11 * 12 13 * 14
Unit Serial Number: 040000008

Figure 8.3 SR4Test Main GUI Screen

The upper half contains buttons to invoke each of the commands that the SR4 unit understands and the lower half
displays the unit's sense data.

8.4 SL2 Test Program Reference

This program is the basic test program and can be used to test basic functionality of a SL2 unit. There are buttons for
each of the commands that can be sent, plus a display area showing the current state data for the unit.

8.4.1 Synopsis

SL2Test [X11l Resource Options]

This program takes no parameters.

8.4.2 Main GUI Screen

The SL2Test main GUI is shown here:

Generated by Doxygen

8.5 Azatrax Device Map Reference 47

File Edit View Options Help ‘
Serial Number To open: | +| Rescan
mmands

Set Q1 Positive, Q2 Megative | Set Q1 Negative, Q2 Positive | Set Q1 and Q2 Oper

Set Q3 and Q4 Oper

W input 1 M input2 Minput3 Minputd

Sense Data
Packet Count o
Motor 1 (Q1&Q2) Status % QlNeg QlPos +# Motor Off Motor On
Motor 2 (Q3&0Q4) Status % Q3 Neg Q3 Pos 4 Motor Off ~ Motor On
Input sense 11 12 + (5 14
Input enabled # [12 13 14
Unit Serial Number: |

Figure 8.4 SL2Test Main GUI Screen

The upper half contains buttons to invoke each of the commands that the SL2 unit understands and the lower half
displays the unit's sense data.

8.5 Azatrax Device Map Reference

This program is a GUI program for mapping Azatrax units. It creates and updates a text file that maps device serial
numbers to names and descriptions. This file can be used as a reference when writing scripts and programs that use
these devices.

8.5.1 Synopsis

AzatraxDeviceMap [X11 Resource Options] [mapfile]

This program takes an optional mapfile as its sole parameter

8.5.2 Main GUI Screen

The AzatraxDeviceMap main GUI is shown here:

Generated by Doxygen

48 Azatrax Test Programs Reference

Eile Edit View Options ﬂelp‘
Serial Number: | +| Lookup Rescan |
Flash LEDs |
Name: |
Descriptior
Update | Delete |

Figure 8.5 AzatraxDeviceMap Main GUI Screen

At the top is a pulldown list of discovered Azatrax unit serial numbers, which can be selected. The LEDs on the selected
unit can be flashed to identify which unit it is. The unit can be given a name and a description in the fields supplied.

Generated by Doxygen

Chapter 9

XPressNet Throttle

The XPressNetThrottle program is a simple program that provides a "virtual" replacement for a LM50 or LM100 on your
computer screen.

9.1 Main GUI

Its basic GUI in Throttle Mode is shown here:

File Edit View Options Help

mmunications Log:

Clear Communications Log

Throttle Mode] Programming Mode]

Address, Speed, and Direction Functions

Address:|3 -l 1 2 3

4 Forward p 5 6
— D 7 8 9

0

Head Light
Al 2
A F10 F11 F12

Speed Steps:[S14 -l

/4
Figure 9.1 XPressNetThrottle Main GUI in Throttle Mode

50 XPressNet Throttle

On the left is a field to enter the locomotive's address, and buttons for selecting the locomotive's direction and a slider for
selecting the locomotive's speed. On the right is an array of buttons to select the locomotive's function bits. By default,
the locomotive address is set to 3 but you can enter a different address. The controls are pretty self explainitory.

9.2 Programming Mode

In programming mode, the Main GUI looks like this:

Eile Edit View Options ﬂelp‘

ommunications Log:

MessageType is NoTimeslot
PressNetThrottle::XPressNetBus DirectModeCVRead 1
L1100 Message

MessageType is Success
PressNetThrottle: :XPressNetBus RequestForServiceModeResults

Clear Communications Log

Throttle Mode] Programming Mode]
Manufacturer ID|0
Manufacturer Version N0|0

Select a CV|1 Primary Address =
1 Primary Addre55|0

/4
Figure 9.2 XPressNetThrottle Main GUI in Programming Mode

The Manufacturer ID and Version number are fetched and filled in. There is a dropdown menu of standard (common)
CVs or you can enter any other CV. The existing value is displayed. You can change it and press ENTER to update the
value of the CV register.

9.3 Open Port

The Open Port dialog, shown below, selects the serial port to use to connect to the XPressNet bus.

Generated by Doxygen

9.3 Open Port 51

/devittySO |

Open ‘ Cancel Help

Figure 9.3 XPressNetThrottle Open Port dialog

Generated by Doxygen

52

XPressNet Throttle

Generated by Doxygen

Chapter 10

Generic Throttle

The GenericThrottle program is a sample program that provides a "virtual" replacement for a hand-held DCC (or DC!)
Throttle on your computer screen. It has no "back-end", that is, it does not actually do anything. It is meant as a starting
point for writing your own "virtual" throttle (and DCC programming) program.

10.1 Main GUI

Its basic GUI in Throttle Mode is shown here:

File Edit View Options Help

mmunications Log:

Clear Communications Log

Throttle Mode] Programming Mode]

Address, Speed, and Direction Functions

Address: 3| - 1 2 3

4 Forward p 5 G
| - | 7 8 9

0

Head Light
A 2
N F10 F11 F12

v/ C
J.

Speed Steps:[/514 -

Figure 10.1 GenericThrottle Main GUI in Throttle Mode

54 Generic Throttle

On the left is a field to enter the locomotive's address, and buttons for selecting the locomotive's direction and a slider for
selecting the locomotive's speed. On the right is an array of buttons to select the locomotive's function bits. By default,
the locomotive address is set to 3 but you can enter a different address. The controls are pretty self explainitory.

10.2 Programming Mode

In programming mode, the Main GUI looks like this:

Eile Edit View Options Help

mmunications Log:

Clear Communications Log

Throttle Mode] Programming Mode]
Manufacturer ID|0
Manufacturer Version No|[]
Select a CV|1 Primary Address =
1 Primary Addre55|0

/4
Figure 10.2 GenericThrottle Main GUI in Programming Mode

The Manufacturer ID and Version number are fetched and filled in. There is a dropdown menu of standard (common)
CVs or you can enter any other CV. The existing value is displayed. You can change it and press ENTER to update the
value of the CV register.

Generated by Doxygen

Chapter 11

Time Table (V2) Tutorial

The Time Table is a program designed to create railroad employee timetables. The program's main display is a graph
of time (of day) versus distance (along the railroad), gridded at time intervals and at station stops. Trains schedules are
represented as colored lines on this graph, with diagonals representing train movement at speed and horizontal lines
representing trains "siting" at stations (layovers or switching).

11.1 Creating a new time table

To create an new time table select the File—>New menu item or the

56 Time Table (V2) Tutorial

toolbar button. A "Create a New Time Table" dialog, described in Section Creating a New Time Table. is displayed. This
dialog box collects three pieces of information: the name of the new time table, the total time (in minutes) the time table
will cover (there are 1440 minutes in a 24 hour day), and the tick interval in minutes. A new time table can also me
created from the command line by including the options —totaltime and —timeincrement along with a name for
the new time table.

11.1.1 Creating stations

Once the name and the two time elements have been selected, a set of at least two stations need to be created. This
is done with the "Create All Stations Dialog", described in Section Creating the station stops for a new time table. This
dialog box is used to create stations, which can have zero or more storage tracks. Storage tracks are used when a
train has a long layover (and needs to be "out of the way" of other traffic) or when a train terminates and the train set is
re-used for a different schedule, generally in the opposite direction. As the stations and their storage tracks are created,
they are displayed in the station listing in the upper part of the dialog.

11.1.2 Creating cabs

After creating all of the stations, zero or more cabs can be created. Cabs are mostly for switched block DC layouts, but
creating "cabs" for a DCC layout is useful, since it allows for a way to visually group trains operationally. Think of the
cabs as a way of defining "crews" (operators). This allows for things like crew (operator) changes as the train moves to
different parts of the layout for example.

11.2 Creating trains

Once the stations and cabs have been created, the program displays an empty chart. The chart's x axis is time (in
minutes). The upper section of the chart has the cabs (if any), the middle part of the chart has the stations, and the
bottom part of the chart has the storage tracks (if any). Now we can create a train. This is done by selecting either the
Trains->Add Train menu item, clicking on the add train (

Generated by Doxygen

11.3 Printing a time table 57

) toolbar button or the Add a new train button. All of these display the "Create New Train Dialog", described in
Section Create New Train Dialog. Trains have a (common) name, a number (or symbol), a class number, an average
speed, a scheduled departure time, and travel between two stations. The train's number (or symbol) needs to be a
unique identification of the train. The class is a whole number, with smaller numbers generally being the "higher" class.

The class is used to indicate a train's priority and is also used to group similar trains together. The speed is the (scale)
speed the train will be traveling between stops. The scheduled departure time is the time the train is scheduled to leave
its origin station. The origin and termination stations are the station end points the train travels between. The train will
get a "stop" at every intermediate station between these two stations. Note that the train won't be expected to actually
stop at any station where the layover time is set to zero. Such stops would just be timekeeping points.

Once the train's basic information is set, the Schedule button can be clicked. This shifts to the schedule page, where
layovers and cab assignments cab be set. The Update buttons propagate the cab settings and adjust the times to
allow for the layovers. If the train makes use of station storage tracks, the St orage button can be clicked and storage
tracks selected. When the train is fully configured, the Done button can be clicked to actually create the train.

11.3 Printing a time table

Once all of the trains have been added, it it possible to "print" a timetable. The LaTeX system is used to format the time
table and the TimeTable program generates a LaTeX source file (.tex) and will run the LaTeX program, pdflatex, to
create a PDF file from the LaTeX source file. This process is started with the File—->Print... menu item or the

Generated by Doxygen

58 Time Table (V2) Tutorial

toolbar button. This pops up the "Print Dialog", described in Section Print Timetable Dialog. This dialog collects the
name of the LaTeX source file, and the path to the LaTeX processing programing, as well as a few other options. It also
has a button to configure how the timetable will be formatted.

The Configure button pops up the "Print Configuration Dialog", described in Section Print Configuration Dialog,
which has three sections, a General section which gets some general configuration settings, a Multi section for
various configuration settings relating to printing multiple tables, and a Groups section, for configuring groups of trains.
Some of the configuration assumes some knowledge of LaTeX. A visit to the TeX and LaTeX web pages (http«
://www.tug.orqg)isagood place to start, with the beginner's pageat http://www.tug.org/begin.html
as the obvious starting point. You don't really have to learn how to use LaTeX, you just need to have a TeX/LaTeX
system installed. The only other issue is the TimeTable. sty file. This file either needs to be installed somewhere in
the TeX/LaTeX search path or it needs to be in the same directory as the LaTeX source file generated by the TimeTable
program. You will need to learn a little about LaTeX if you want to include various sorts of customizations.

Generated by Doxygen

http://www.tug.org
http://www.tug.org
http://www.tug.org/begin.html

Chapter 12

Time Table (V2) Reference

The Time Table (V2) program is a hybrid program, consisting of a Tcl/Tk GUI on top of a C++ class library. The GUI
provides the user interface to the algorithms and data structures contained in the C++ class library. This program was
inspired by chapter 8 of the book How to Operate Your Model Railroad [1] by Bruce A. Chubb. | strongly recommend
reading this chapter fully before using this program. This program implements the methods described in this chapter, in
an automated fashion.

12.1 Command Line Usage

There are two formats for the TimeTable program's command line. The command line can either have a single file name,
the name of an existing time table file or it can have two options (-totaltime and ~t imeincrement) and the name
of a new time table. The first form loads an existing time table (see Section Loading an Exiting Time Table File and the
second form creates a new time table (see Section Creating a New Time Table. These two command line formats are

shown here:
TimeTable oldtimetablefile
TimeTable -totaltime time -timeincrement time nameoftimetable

12.2 Layout of the Main GUI

The main GUI window is shown here:

60 Time Table (V2) Reference

N X N = —
File Edit View Options Trains Stations Cabs HMotes Help
OO G = aal da| & 8 4| =| =| 5| =d| = =d| 8l D) ‘

Clear Duplicate Station

Add Storage Track

Add A Cab

Create New Hote

Edit Existing Note

#Add note to train

Add note to train at station stop
Remove note from train

Remove note from train at station stop
Quit -- Exit HOW

i)
Add a new train |
Delete an existing train |
Set Duplicate Station |
|
|
|
|
|
|
|
|
|
|

e —————————————————

Figure 12.1 The main GUI screen of the Time Table (V2) Program

It contains a menu bar, a toolbar, a time table chart, and a button menu. The toolbar is shown here:

| Do Q=1 as| fe| & § + = = 5| 56| 5| 56| 8|6

Figure 12.2 The Toolbar of the Time Table (V2) Program

The button menu is shown here:

Generated by Doxygen

12.3 Creating a New Time Table

61

Add a new train

Delete an existing train

set Duplicate Station

Clear Duplicate Station

Add Storage Track

Add A Cab

Create Mew Hote

Edit Existing Note

Add note to train

Add note to train at station stop

Remove note from train

Remove note from train at station stop

Quit -- Exit HOW

Figure 12.3 The Button Menu of the Time Table (V2) Program

12.3 Creating a New Time Table

Creating a new time table can be done from the command line by specifying a total time (in minutes) value with the
—totaltime option and a time increment value (in minutes) value with the —t imeincrement option and a name
for the new time table (as shown in the second line above). A new time table can also be created with the New menu
item of the Fi1le menu or the

Generated by Doxygen

62 Time Table (V2) Reference

toolbar button. These later two methods use the "Create a New Time Table" dialog, shown below, to get the total time,
time increment, and the name of the new time table. If there is a time table file already loaded, a confirmation dialog will
be displayed.

Generated by Doxygen

12.3 Creating a New Time Table 63

~ Create a New Time Table

Hame of Time Table:

|

Total Time: 1440 =
Time Interval for ticks: 15 =

oK cancel | Help |

L

Figure 12.4 Create A New Time Table dialog

A simple chart with three stations, four cabs (labeled "Crew 1" through "Crew 4"), and two storage tracks is shown below.

Crew 1
Creny 2

Crenys 4

o]

Two

Three

OneTrack 1 M A s R o

Figure 12.5 Simple chart with three stations, four cabs, and two storage tracks

Generated by Doxygen

64 Time Table (V2) Reference

12.3.1 Creating the station stops for a new time table

Stations for a time table must all be created when the time table is created. Stations cannot be added or removed later.
When a new time table is created the "Create All Stations Dialog", shown below, is displayed to create all of the station
stops.

= Create All Stations

Stations:

Add Station:
Hame:

SMiles:

Add
Add Storage Track:
Station: |

Track Hame: |

Add

cancel | Help |

Figure 12.6 Create All Stations Dialog

12.3.2 Create All Cabs Dialog

Once the stations have been created, an initial set of "cabs" can be created. Commonly, cabs are only used on block
switch DC layouts, but the cabs can be used as with a DCC layout as a way to associate trains with different operating
"crews" (operators) or just to identify different classes of trains by color, etc. The "Create All Cabs" dialog, shown below,
is used to bulk create an initial set of cabs.

Generated by Doxygen

12.4 Loading an Exiting Time Table File 65

= Create All Cabs

Cahs:

Figure 12.7 Create All Cabs Dialog

12.4 Loading an Exiting Time Table File

An existing time table file can be loaded from the command line (as shown in the first line of the CLI usage, with the
Open... menu item of the Fi1e menu or the

Generated by Doxygen

66 Time Table (V2) Reference

toolbar button. If there is a time table file already loaded, a confirmation dialog will be displayed.

12.5 Saving a Time Table File

The currently loaded time table can be saved with either the Save (or Save As...) menu item of the File menu or the

Generated by Doxygen

12.6 Adding Trains

67

toolbar button.

12.6 Adding Trains

Trains are added using the either the Add Train menu item of the Trains menu, clicking on the add train (

Generated by Doxygen

68 Time Table (V2) Reference

) toolbar button or the Add a new train button. All of these display the "Create New Train Dialog", described in
Section Create New Train Dialog.

12.6.1 Create New Train Dialog

The "Create New Train Dialog" first collects some basic information about the new train, as shown below. The basic
train information consists of the train's common name, its number (or symbol), its class number, its average speed, its
scheduled departure time, and the two stations it travels between.

Generated by Doxygen

12.6 Adding Trains 69

= Create New Train \
.HEII'I'IE: I—

Mumber:

Class: 1
Speed: G0
Departure: H
Origin: Cine

Termination: |Three

Schedule Reset Infornmation

| Done |

Figure 12.8 Creating a new train dialog, basic information

The train's number (or symbol) needs to be a unique identification of the train. The common name need not be unique.
The class is a whole number, with smaller numbers generally being the "higher" class. The class is used to indicate a
train's priority and is also used to group similar trains together. The speed is the (scale) speed the train will be traveling
between stops. The scheduled departure time is the time the train is scheduled to leave its origin station. The origin and
termination stations are the station end points the train travels between.

The Schedule button selects the scheduling page of the "Create a @addindex "train, adding a schedule" New Train
Dialog", as shown below. On this page, the cab can be selected and layover periods at intermediate stations can be set.
The Update buttons propagate the cab settings and adjust the times to allow for the layovers.

Generated by Doxygen

70 Time Table (V2) Reference

= Create New Train

Smile Arrival Station Hame Layover Depariure Cah
0.0 [Origin~ One o 3a0o |Crew2 v Update |
50605 Two [10 2fe&0s [Crew 2]~ update |
10.0 | 610 Three |- Si|Terminate [Crew 1 +| Update |

Storage | Reset Schedule

Done | Cancel | Help

Figure 12.9 Creating a new train dialog, scheduling information

The St orage button selects the storage track allocation page of the "Create a New Train Dialog", as shown below. This
page lists those stations that have storage tracks available. It only makes sense to select storage tracks for intermediate
stops if there is a layover or for originating or terminating stops.

Generated by Doxygen

12.7 Deleting Trains

7

= Create New Train

Smile Arrival Station Hame Storage Track
0.0 Origin One
10.0 6:10 Three

Reset Storage

| Done | Cancel Help |

Figure 12.10 Creating a new train dialog, storage track selection

12.7 Deleting Trains

Trains are deleted using the Delete Train menu item of the Trains menu, clicking on the delete train (

Generated by Doxygen

72 Time Table (V2) Reference

) toolbar button or the Delete an Existing train button. All of these display the "Select One Train Dialog",
described in Section Select One Train Dialog. A delete confirmation dialog will also be displayed.

12.8 Linking and Unlinking Duplicate Stations

Duplicate stations occur mostly with "out and back" type layouts where the opposite ends of the line are modeled with the
same trackage (usually a yard). Duplicate stations also occur with reverse loops. In all cases, these are stations which
are logically different, but which use the same tracks. There is an example in Figure 8-4 on page 86 of [1]. It is necessary
to keep track of this trackage in the schedule. The duplicate station linking handles this. Duplicate stations need to be
setup before trains have been added. The Set Duplicate Station and Clear Duplicate Station menu
items of the Stations menu, the

Generated by Doxygen

12.9 Adding Station Storage Tracks 73

and

toolbar buttons, and the Set Duplicate Station and Clear Duplicate Station buttons set and clear
duplicate stations.

12.9 Adding Station Storage Tracks

Storage tracks are sidings where whole trains can be stored, either during a long layover or between trips. The Add
Storage Track menu item of the Stations menu, the

Generated by Doxygen

74 Time Table (V2) Reference

toolbar button, or the Add Storage Track button are used to add a storage track to a station.

12.10 Adding Cabs

Generally "Cabs" refer to the separate throttle controls on a block switched DC layout. They are generally non-existent
with a DCC layout, but virtual cabs might be used as a way of assigning crews (operators) to a train or to a segment of
a train's run. Cabs are added with the Add A Cab menu item of the Cabs menu, the

Generated by Doxygen

12.11 Handling Notes 75

toolbar button or the Add A Cab button.

12.11 Handling Notes

Notes are brief memos about the operating rules in effect. There is a

+ single pool of notes. Notes from this pool can be associated either with a whole train or with a train at a station stop.
The notes can specify schedule exceptions (eg "Daily except Saturdays, Sundays, and Holidays"), or operating
rules relating to meets.

12.11.1 Creating New Notes and Editing Existing Notes

Notes are created and edited the Create New Note and Edit Existing Note menu items of the Notes menu,
the

Generated by Doxygen

76 Time Table (V2) Reference

i

and

Generated by Doxygen

12.11 Handling Notes 77

toolbar buttons, or the Create New Note and Edit Existing Note buttons. The the "Note editor dialog", shown
below is used to create or edit the note. Notes are numbered consecutively starting with 1.

Generated by Doxygen

78 Time Table (V2) Reference

— Creating new note

Figure 12.11 Note editor dialog

12.11.2 Adding and Removing a Notes To Trains

Notes are added to trains or removed from trains with Notes menu items Add note to train, Add note to
trainat station stop, Remove note fromtrain, and Remove note fromtrain at station stop;
the

Generated by Doxygen

12.11 Handling Notes 79

Generated by Doxygen

80

Time Table (V2) Reference

, and

Generated by Doxygen

12.12 Printing a Time Table 81

; or the Add note to train, Add note to train at station stop, Remove note from train, and
Remove note from train at station stop buttons. All of these display the "Add (or Remove) Note dialog",
shown below.

-~ Add note to train

Train: 101
Mote Humber: 1]
At Station:

L4 |lale]l4

Al Cancel Help

=

Figure 12.12 Add (or Remove) Note dialog

12.12 Printing a Time Table

"Printing" a time table actually means creating a LaTeX file and then processing that LaTeX file through a LaTeX pro-
cessing program (typically pdflatex). LaTeX provides the means to produce a professionally formatted document
and has the means to provide things like table of contents and the creation of a final document in a selection of different
final formats, including PDF (via pdflatex), PostScript (via latex and dvips) or HTML (via the ht latex script
from tex4ht package).

Much of the formatting is customizable through the insertion of LaTeX code fragments as well as through various
parameter settings. It is also possible to edit the LaTeX style file that comes with the Time Table program (Time«
Table.sty) to tweak some of the fine details of the formatting as well.

The Print menu item of the File menu or the

'Some knowledge of how LaTeX works is recommended when messing with the style file.

Generated by Doxygen

82 Time Table (V2) Reference

toolbar button initiate the print process by displaying the "Print Timetable" dialog, described in Section
Print Timetable Dialog.

12.12.1 Print Timetable Dialog

The "Print Timetable" dialog, shown below, collects the basic information needed to generate and process a LaTeX
source file from the time table data structure. This information consists of the name of the name of the LaTeX source
file to create, the LaTeX processing program (pdf 1atex by default), whether to run the LaTeX processing three times
(to get the table of contents right), the name of any post processing command (such as dvips if using plain 1atex).
Most of the time, this is enough for a standard, basic time table. The Configure button can be used to configure a
selection of options using a "Print Configuration" dialog, described in Section Print Configuration Dialog.

Generated by Doxygen

12.12 Printing a Time Table 83

@ = Print Timetable

LaTeX file name: [testtalle tex
LaTeX processing program: |fusrfhinfpdﬂatex
Run three times? (for TOC) # Yes - Ho
Post Process Command: |

Run post processing commands + Yes ¥ No

ol
=

Print Configure Cancel | Help

Figure 12.13 Print Timetable dialog

Once the settings and configuration have been set, the Print initiates the process. First a LaTeX source file is
generated, then the LaTeX processing program is run once or three times. The output from these runs are displayed
in a process log window (LaTeX outputs a fair amount of diagnostic output, most of which can be ignored). If you are
using the default processor (pdflatex), you should now have a PDF file which can be viewed or printed with the PDF
viewer of your choice.

12.12.2 Print Configuration Dialog

The Print Configuration Dialog, shown below, provide for the setting of many print configuration options. The general
settings, provide for setting the title, subtitle, the date, whether to have LaTeX format for double sided printing, setting
the time format, setting the logical direction of trains, column widths, and including additional commands in the LaTeX
preamble (usually including additional style packages 2 and style settings). The multi-table settings, provide for settings
relating to time tables using multiple tables. These settings include whether to create a table of contents, whether to use
multiple tables at all, LaTeX code to precede the table of contents, LaTeX code to precede notes section, the header
to use if a single "All Trains" table is generated, and LaTeX code to precede this single "All Trains" table. The groups
settings, provide for settings for each group. This includes whether to group by class or to manually group trains and
provides for setting the class or group heading and for LaTeX code to precede the group table, and if grouping manually,
selecting the trains in the group.

2The style pages supertabular and graphicx are already included.

Generated by Doxygen

84

Time Table (V2) Reference

= Print Configuration

General | Multi | Groups |

Title:

Sub Title:

Date:

Humber of sides:
Time Format:

AMIPM Tormat:
Forward Direction is generally:

Station Column Width:
Time Column Width:

Additional LaTeX preamble code:

ky Model Railroad Timetable

Employee Timetable Mumber 1

wtoday

single
4 24 Hour
4 Smallaorp
~ Large AM or PM
~ Light font for AM, bold font for PM

MNorthhound

15

0.5

EILIETLE N

Apply | Cancel | Help |

Figure 12.14 Print Configuration dialog, General settings

Generated by Doxygen

12.12 Printing a Time Table

85

= Print Configuration

General Multi]Gmups |

Create Tahle Of Contents?

no

Use multiple tables? no

LaTeX code before the Table of Contents:
S

% Insert Pre TOC material here.

LaTeX code at the beginning of the notes section:
%

Cover graphic, logo, etc.
k]

% Insert notes prefix info here.
k]

All Trains Header: All Trains

LaTeX code before the All Trains Section:

Ppply |

Cancel |

Help |

Figure 12.15 Print Configuration dialog, Multi settings

Generated by Doxygen

86 Time Table (V2) Reference

= Print Configuration

General | Multi Groups |

Group by: ICIass

Class Header:
Class section LaTeX code:

Add Train To Group

Apply | Cancel | Help |

Figure 12.16 Print Configuration dialog, Groups settings

12.13 Exiting From the Program

The Exit (or Close) menu item of the File menu, the

Generated by Doxygen

12.14 Select One Train Dialog 87

toolbar button, or the Quit — Exit NOW button exit the program. A confirmation dialog is displayed to get confirmation.

12.14 Select One Train Dialog

The "Select One Train dialog", shown below, is used to select a train either for deletion (Section Deleting Trains) or for
viewing (Section Trains).

Generated by Doxygen

88 Time Table (V2) Reference

= Select one train

102 Ewvening Fast Mail

Train Humber Selectiun:I

0K Cancel | Help |

=l

Figure 12.17 Select One Train dialog

12.15 The View Menu

The view menu contains menu items for viewing detailed information about various things, including trains (Section
Trains, stations (Section Stations), and notes (Section Notes).

12.15.1 Trains

There are two menu items for viewing trains, View One Train and View A1l Trains. The View One Train
uses the "Select One Train dialog" (Section Select One Train Dialog) to select a train to display detailed information
about and the View A1l Trains menu item displays a dialog listing all of the trains, by number and name, with
buttons to get more detailed information.

12.15.2 Stations

There are two menu items for viewing stations, View One Station and View A1l Stations. The View One
Station uses the "Select One Station dialog" to select a station to display detailed information about and the View
All Stations menu item displays a dialog listing all of the stations, by name and scale mile, with buttons to get more
detailed information.

Generated by Doxygen

12.16 System Configuration 89

12.15.3 Notes

There are two menu items for viewing notes, View One Note and View A11 Notes. The View One Note uses the
"Select One Note dialog" to select a note to display detailed information about and the View A11 Notes menu item
displays a dialog listing all of the notes, by number and beginning text, with buttons to get more detailed information.

12.16 System Configuration

The Time Table program has a small number of global configuration options. These are stored in a file named .timeTable
(TimeTable. rc under MS-Windows) in the current user's HOME directory. These configuration options are:

Path to pdflatex The pathname to the pdflatex executable.
Label Width in Chart The width in pixels of cab, station, and storage track labels in the time table chart.
Height of main window The initial height of the main window.

Width of main window The initial width of the main window.

The system configuration file is read at program start up. If the configuration does not exist, a default one is created the
first time the program is run.

The Options menu manages the system configuration, with menu items to edit the system configuration, save it and
reload it.

12.17 Add Cab Dialog

12.18 Add Remove Note Dialog

12.19 Edit Note Dialog

12.20 Edit System Configuration

12.21 Edit Train Dialog

12.22 Select A Storage Track Name

12.23 Select One Note Dialog

12.24 Select One Station Dialog

Generated by Doxygen

90

Time Table (V2) Reference

Generated by Doxygen

Chapter 13

Freight Car Forwarder (V2) Tutorial

The Freight Car Forwarder is a program designed to simulate freight car traffic on your model railroad. It does this
by matching types of freight cars with industries. Specific types of freight cars are meant to carry specific types of
commodities and specific industries produce or consume specific types of commaodities.

Before you start using the Freight Car Forwarder system, you should carefully study Section Data files and Section
Data File Formats of the reference section. These files describe the system layout (system file), the industries (industry
file), the trains that will move the cars (trains file), and the cars themselves (the cars file). There are some additional
files, including an owner's file and a car types file, as well as a file for statistics. All of these files are plain text files—you
will need a plain text file editor (such as Notepad under MS-Windows or gedit under many versions of Linux ') to create
and generally edit these files. The only files that are ever modified by the Freight Car Forwarder system are the cars and
the statistics files. You should not edit the statistics file—this file is automatically generated by the Freight Car Forwarder
system. While it is possible to use tools available as part of the Freight Car Forwarder system to edit cars in the cars
file, it is probably best to use a regular text editor to add, modify, or delete cars in a wholesale manor. All of the other
files are treated as "constant data" by the Freight Car Forwarder system, which will load the data into memory and not
modify that data.

13.1 Loading System Data

The Freight Car Forwarder starts loading data by opening and reading the system file, using either the file menu's
Open... item or open file button on the toolbar. This file contains the path names of the other files, which are assumed
to be relative to the directory (folder) that contains the system file. All of the system data is loaded into a large data
structure, which is then used by the program to simulate car movements.

13.2 Assigning Cars

In order to move cars, the cars need to be assigned, that is, they need to have a destination set, either to be loaded (if
empty) or unloaded (if loaded). The Car Assignment procedure performs this task.

"It might be worthwhile to install a powerful general purpose text editor such as GNUEmacs for this purpose.

92 Freight Car Forwarder (V2) Tutorial

13.3 Running Trains

Once cars has been assigned, they need to be moved. Cars are moved on trains, and this is done with the run trains
procedures. There are three of these procedures: Run All Trains in Operating Session, Run Boxmoves, and Run One
Train at a time. The run trains procedures simulate the actual movement of cars and determines which trains will move
which cars and in what order. From this simulation, a set of yard and switch lists can be generated and printed out for
use during your operating session.

13.4 Printing Yard and Switch Lists

Once the trains have been run, yard and switch lists can be printed out, using the print yard lists menu.

13.5 Saving the updated car data

Once you have assigned cars, simulated train movements and created your Yard and Switch Lists, you should save the
cars file. You should now be ready to run your trains in an operating session. If your session went off well, you will be
ready to make car assignments for your next session. If there were problems during the operating session (such as bad
ordered cars or late trains), you might have to make adjustments before running the car assignment process for the next
session. You would use the car editor to make these adjustments. 2

13.6 Generating Reports

Various reports can also be generated and printed using the reports menu.

13.7 Other activities

Other activities include adding, removing, and editing cars and displaying various state information, such as assigned
and unassigned cars, car movement information, lists of trains, and lists of industries, stations, and divisions.

2|t might be easier to use a text editor in the case of wholesale changes.

Generated by Doxygen

Chapter 14

Freight Car Forwarder (V2) Reference

The Freight Car Forwarder (V2) is a hybrid program, consisting of a Tcl/Tk GUI on top of a C++ class library. The GUI
provides the user interface to the algorithms and data structures contained in the C++ class library. The program is
based on Tim O'Connor's Freight Car Forwarder originally written in QBASIC. | first ported the program to a pure Tcl/Tk
application. Then for better performance, | recoded the low-level guts (mostly heavy data indexing logic) to a C++ class
library, using the STL to implement the various aggregate collections of objects, retaining Tcl/Tk for the GUI.

14.1 Command Line Usage

The name of the system file to load can be specified on the command line. See Section Opening and loading a system file.
for more information.

14.2 Layout of the Main GUI

The main GUI window, shown below,

94 Freight Car Forwarder (V2) Reference

Fle Edit View Options Help
FEFEEFPPPPEEEEEEBEC
"I Load Cars File
Save Cars File

Manage trains/printing

Miew Car Information

Edit Car Information

Add a Hew Car

Delete An Existing Car

Show Unassigned Cars

Run Car Assil

Run All Trains In Operating Session

Run Boxmove Trains

Run Trains One At A Time
Open Printer Alt-P

Close Printer Ali-C

Print Yard Lists, etc.
Show Cars On Screen
Reports Menu

Reset Industry Statistics
Quit -- Exit HOW

Figure 14.1 The main GUI screen of the Freight Car Forwarder (V2) Program

contains a menu bar, a toolbar,

I@ﬂﬂ@ﬂ@%ﬂaﬁﬂﬁﬁﬁﬁﬂﬂ@ﬂ

Figure 14.2 The Toolbar of the Freight Car Forwarder (V2) Program

a text display area, and a button menu.

Generated by Doxygen

14.2 Layout of the Main GUI

95

| Load Cars File
Save Cars File
KManage trains/printing

View Car Information

Edit Car Information

Add a Hew Car

Delete An Existing Car

Show Unassigned Cars

Run Car Assignments

Run All Trains In Operating Session

Run Boxmove Trains

Run Trains One At A Time
Open Printer Alt-P

Close Printer Alt-C

Print Yard Lists, etc.
Show Cars On Screen
Reports Menu

Reset Industry Statistics
Quit - Exit HOW

Figure 14.3 The Button Menu of the Freight Car Forwarder (V2) Program

There is also a work in progress message area, a general status area, a progress meter, and several indicators.

Generated by Doxygen

96 Freight Car Forwarder (V2) Reference

Figure 14.4 The Indicators of the Freight Car Forwarder (V2) Program

The main GUI also has three "slide out" frames, one for showing train status when trains are run, one for viewing a car's
information, and one for editing a car's information. Each slide out has a corresponding indicator.

14.3 Opening and loading a system file.

The File->Open... menu button and the

Generated by Doxygen

14.4 Loading and reloading the cars file. 97

toolbar button pop-up a file selection dialog to select a system file to load. Once this file is successfully loaded, the
name of the file, the name of the system, the current session and shift number, plus a count of

divisions, stations, industries, cars, and trains is displayed in the main GUI's text area. Also all of the buttons are made
active. The name of the system file can be specified on the command line and the named system file will be loaded
when the program starts.

14.4 Loading and reloading the cars file.

The Load Cars File menu button and the

Generated by Doxygen

98 Freight Car Forwarder (V2) Reference

toolbar button load (or reload) the cars file.

14.5 Saving the cars file.

The Save Cars File menu button and the

Generated by Doxygen

14.6 Managing trains and printing 99

toolbar button save the cars and statistics files. This is something you need to do after you have simulated a session,
by running the car assignment procedure and then run the trains in your session. This saves the state for the next time
you run the Freight Car Forwarder.

14.6 Managing trains and printing

The Manage trains/printing menu button and the

Generated by Doxygen

100 Freight Car Forwarder (V2) Reference

toolbar button pop-up the train/printing management menu. This menu provides a set of functions relating to what trains
are printed and can also print a dispatcher report and generate lists of various sorts of trains. The menu is shown below.

Generated by Doxygen

14.6 Managing trains and printing 101

Control Yard Lists Y
Print All Trains P
Frint HO Trains etc. M
Print Dispaicher Report D
List Locals This Shift L
List Manifests This Shift M
List All Trains All Shifts 2
Manage One Train 1

Figure 14.5 Train/Printing Management Menu.

14.6.1 Controlling Yard Lists

The Control Yard Lists menu item (y key) pops up a dialog, shown below, to control whether to print 0, 1, or 2
alphabetical lists and whether to print 0, 1, or 2 train lists.

Genera ted by Doxygen

102 Freight Car Forwarder (V2) Reference

Alphabetical Lists: Mo | _| Twice

Train Lists: Mo | | Twice

OK Cancel Help

Figure 14.6 Control Yard Lists Dialog

14.6.2 Enabling printing for all trains

The Print A1l Trains menu item (p key) turns on printing for all trains.

14.6.3 Disabling printing for all trains

The Print No Trains menu item (n key) turns off printing for all trains.

14.6.4 Printing a dispatcher report

The Print Dispatcher Report menu item (d key) enables the printing of a dispatcher report.

14.6.5 Listing local trains for this shift

The List Locals This Shift menu item (I key) lists all locals for this shift.

14.6.6 Listing manifests for this shift

The List Manifests This Shift menuitem (m key) lists manifest freights for this shift.

Generated by Doxygen

14.7 Viewing a car's information 103

14.6.7 Listing all trains for all shifts

The List A1l Trains A1l Shifts (? key) Lists all trains.

14.6.8 Managing one train

The Manage One Train menu item (1 key) pops up a dialog, shown below, to enable or disable printing of a single
train, as well as setting the train's maximum length and setting which shift the train will be run. The train is selected with
the "Select Train Dialog", described in Section Select A Train Dialog.

Print Train? ¥ ¥Yes - No
Max Length: |600]
Shift Number: & 1 -2 - 3

ok || mpply | cancel Help |

Figure 14.7 Train Management Dialog

14.7 Viewing a car's information

The View Car Information menu button and the

Generated by Doxygen

104 Freight Car Forwarder (V2) Reference

toolbar button display the information about a single car. The information is displayed on the view car "slide out", shown
below. The car is selected with the "Search For Cars Dialog", described in Section Search For Cars Dialog.

Generated by Doxygen

14.8 Editing a car's information 105

|Railroad: L &85
|Car Humber: 300021
|Hume Divisions: |[EC
|Car Length 50
|Type: RS reefer
|Gearance 1

Weight Class |1
[Empty Weight 35
|Loaded Weight &0
|Caris: Loaded
|F|.ssignments 2
|F|xed Route Mo

Ok to Mirror | ves
|Owner initials |RFH
|Destjnatjun - at -

|Lu-::atiun Fepsico Exports at Counter Weigh

I 0K Cancel

Figure 14.8 View Car Information Slideout

14.8 Editing a car's information

The Edit Car Information menu button and the

Generated by Doxygen

106 Freight Car Forwarder (V2) Reference

toolbar button display the information about a single car and allow for editing this information. The information is dis-
played on the edit car "slide out", shown below. The car is selected with the "Search For Cars Dialog", described in
Section Search For Cars Dialog.

Generated by Doxygen

14.9 Adding a new car

107

]Hajlruaﬂ:|L._I&EiS

JCar Humber: 300021

JHI]ITIE Divisions: |EC

| Car Length| 50

JT'pr:lHS reefer

J (]earancel 1

| weight (]ass|1

| Empty WEightISE

| Loaded Weight &0

]Car is:lLDaded

Jleed Huutel o]

JOktu Min-ur|v.as

LA LA LA flalmf e[| [A]e|[4 |[4]r

j Owner initials |RPH

]Destjnaﬁun FPepsico Exports at Counter '-j

JLD[:atiDHIF'EpSiED Expors at Counter Weij

|

Cancel

|
J Update Car
J

Figure 14.9 Edit Car Information Slideout

14.9 Adding a new car

The Add a New Car menu button and the

Generated by Doxygen

108 Freight Car Forwarder (V2) Reference

toolbar button provide for adding a new car. The edit car "slide out", shown above, is displayed and the information
about the new car can be filled in and the car added.

14.10 Deleting an existing car

The Delete An Existing Car menu button and the

Generated by Doxygen

14.11 Showing cars without assignments 109

toolbar button provide for deleting an existing car. The car is selected with the "Search For Cars Dialog", described in
Section Search For Cars Dialog and the car's information is displayed in the view car "slide out", shown above. Actual
removal can then be confirmed.

14.11 Showing cars without assignments

The Show Unassigned Cars menu button and the

Generated by Doxygen

110 Freight Car Forwarder (V2) Reference

toolbar button display unassigned cars in the text window.

14.12 Running the car assignment procedure

The Run Car Assignments menu button and the

Generated by Doxygen

14.13 Running every train in the operating session 111

toolbar button run the car assignment procedure. This procedure attempts to give as many unassigned cars assign-
ments, that is possible destinations. Considerations taken into account are the type of car, whether it is loaded or not,
industries with available trackage to accommodate the car, and so on. The list of cars is scanned twice and the progress
of the procedure is displayed in the text area.

14.13 Running every train in the operating session

The Run A11 Trains in Operating Session menu button and the

Generated by Doxygen

112 Freight Car Forwarder (V2) Reference

toolbar button run all trains in the operating session, except the end of session box moves. Each train's progress is
shown in the "Train Status Slideout", shown below.

Generated by Doxygen

14.14 Running the box move trains

J Running status of train 320

JCurrenﬂy at:|Tub Yard (Tub Yard)

|Train Length: |0

JNumher of Cars: |EI

JTrain Tons: |IZI

JTrain Luads:|n

Train Empties: |0
|)

JTrain Longest: |0
J Stop:

1 m

J Current Length:

E

Current Humber of cars:

E

Close

e e e e e e e

Figure 14.10 Train Status Slideout

14.14 Running the box move trains

The Run Boxmove Trains menu button and the

Generated by Doxygen

114 Freight Car Forwarder (V2) Reference

toolbar button run all of the box move trains in the operating session.
Each train's progress is shown in the "Train Status Slideout", shown above.

14.15 Running a single train

The Run Trains One At A Time menu button and the

Generated by Doxygen

14.16 Opening a Printer 115

toolbar button run a single train, selected with the "Select Train Dialog", described in Section Select A Train Dialog. The
train's progress is shown in the "Train Status Slideout", shown above.

14.16 Opening a Printer

The Open Printer menu button and the

Generated by Doxygen

116 Freight Car Forwarder (V2) Reference

toolbar button open the printer output file, using the "Open Printer Dialog", shown below. The status of the printer output,
open or closed, is shown with the printer status indication.

Generated by Doxygen

14.16 Opening a Printer

117

Print file:
Type of printer:

o

foo.text ﬂ
Text |
Cancel Help |

Figure 14.11 Open Printer Dialog

|

Generated by Doxygen

118 Freight Car Forwarder (V2) Reference

14.17 Closing the printer

The Close Printer menu button and the

toolbar button close the printer. The status of the printer output, open or closed, is shown with the printer status indication.

Generated by Doxygen

14.18 Printing yard and switch lists

119

14.18 Printing yard and switch lists

The Print Yard Lists, etc. menu button and the

Generated by Doxygen

120 Freight Car Forwarder (V2) Reference

toolbar button print the yard and switch lists.

14.19 Showing cars on the screen

The Show Cars On Screen menu button and the

Generated by Doxygen

14.19 Showing cars on the screen 121

toolbar button pops up a menu, shown below, of classes of cars to show.

Generated by Doxygen

122 Freight Car Forwarder (V2) Reference

show Cars MOT Moved

show Car Movements

show Car Movements by Train
show Car Movementis by Location
show Cars Moved and MOT Moved
ahow Cars In Division

shovws Train Totals

List Train Names

show One Train's Cars

Figure 14.12 Show Cars Menu

- oD m e - =

—t

14.20 Printing Reports

The Reports Menu menu button and the

Generated by Doxygen

14.20 Printing Reports 123

toolbar button pops up a menu, shown below, of possible reports.

Generated by Doxygen

124 Freight Car Forwarder (V2) Reference

All Industines |
All Trains T
All Cars C
Cars That Did Mot Move M
Car Type Heporis

Car Location Reports

Car Owner Reporis 0
Industry Analysis A

Figure 14.13 Reports Menu

14.21 Resetting Industry Statistics

The Reset Industry Statistics menu button and the

Generated by Doxygen

14.22 Quiting the application 125

toolbar button resets the industry statistics.

14.22 Quiting the application

The Quit — Exit NOW menu button and the

Generated by Doxygen

126 Freight Car Forwarder (V2) Reference

toolbar button exit the program. A confirmation dialog is popped up.

14.23 General Dialogs

14.23.1 Control Yard Lists Dialog
14.23.2 Enter Owner Initials Dialog

14.23.3 Select A Train Dialog

The Select a Train Dialog is used to select a train (to manage, run, or print). The Filter button uses the Train
Name Pattern to match against train names to select a subset of trains to select from and can contain these special
sequences:

» * Matches any sequence of zero or more characters in the train name.
+ ? Matches any single character in the train name.

« [chars] Matches any character in the set given by chars.

Generated by Doxygen

14.23 General Dialogs 127

« If a sequence of the form x—y appears in chars, then any character between x and y, inclusive, will match.
Characters are matched in a case insensitive way.

« \x matches the single character x. This provides a way of avoiding the special interpretation of the characters
*?[\ in the pattern.

Train Hame Patiemn: *

200 Al
210
220
230
300
310
320
330 —
BOXTUBA
BOXTUBE

Train Hame Selection: |EIIIIII

‘ oK | Fiter | Cancel | Help |

|

Figure 14.14 Select A Train Dialog

14.23.4 Manage One Train Dialog

14.23.5 Open Printer Dialog

14.23.6 Search For Cars Dialog

The Search For Cars Dialog is used to select a car (to view, edit, or delete). The Filter button selects a subset of
cars based on the trailing car number digits.

Generated by Doxygen

128 Freight Car Forwarder (V2) Reference

Car Humber Pattem:

LJ&B3 300021 RS reefer
LJ&BS 300022 RS reefer
LJ&B3 400021 RB PD hoxcar
LJ&BS 400022 RB PD hoxcar
LJ&B3 000021 XM DD boxcar
LJ&B3 000022 XM DD boxcar
LJ&BS 90000 FCD wellcar
LJ&B3 30001 FCD wellcar

Car Number Selection: |3nnnz1

‘ oK | Fiter | Cancel | Help |
-

Figure 14.15 Search For Cars Dialog

14.23.7 Select A Division Dialog
14.23.8 Select An Industry Dialog
14.23.9 Select A Station Dialog

14.23.10 Select Car Type

14.24 Data files

The Freight Car Forwarder uses a collection of eight data files:

1. System File This is the master file. It contains the (relative) paths to the remaining seven files, along with the
name of the railroad system, its divisions, and its stations.

2. Industry File This file holds the description of the industries, both on-line, which are actually modeled on
the layout and off-line, which are imaginary industries not actually on the layout, but might be modeled as implied
by staging yards or by interchange with other layouts or imaginary off-line railroads.

Generated by Doxygen

14.24 Data files 129

3. Trains File This file holds the description of the trains used to actually move the cars about the layout.

4. Orders File This file contains standing train orders and is only used to add additional information to the
printouts given to train operators.

5. Owners File This file contains a mapping between owner initials and owner names. Used with various gener-
ated reports.

6. Car Types File This file contains a mapping between car type codes and full names and descriptions of car
types.

7. Cars File This is the file containing information about all of the rolling stock on or off the layout.

8. Statistics File This is the statistics file. It is generated by the program and contains statistical information
about car and industry utilization.

14.24.1 Data File Formats

Some general notes:

A comment it indicated by an apostrophe. All characters from the apostrophe to the end of the line are discarded when
read. The files generally contain lines of comma separated fields, a format designed for BASIC read statements—the
original program that this program is based on was written in a version of BASIC and uses the same file format.

14.24.1.1 System File

The first line of the system file is the name of the railroad system. This line is used in various banners and report
headings.

The second line should be a blank line.

Then come the names of the remaining seven data files, one per line, in this order: ITndustry File, Trains File,
Orders File, Owners File, Car Types File, Cars File, andfinally Statistics File.

After the file names comes the division list. This starts with a count of the maximum number of divisions:
Divisions = Number

where Number is a positive non zero integer.

This is followed by division specifications, which is a list of 5 values separated by commas:

Number, Symbol, Home, Area, Name

Where Number is the index of the division (between 1 and the max number of divisions, inclusive), Symbol is an
alphanumeric character (a-z, 0-9, A-Z), Home is the number of the home yard for this division (must be a yard specified
inthe Industry File), area is an Area symbol, and Name is the name of the division.

A line containing a -1 terminates the list of divisions.

Then comes the stations (cities), starting with a line defining the maximum number of stations:

Stations = Number
where Number is a positive non zero integer.

This is followed by station specifications, which is a list of 4 values separated by commas:

Number,Name,Division, Comment

Where Number is the index of the station (between 1 and the max number of stations, inclusive), Name is the name of
the city, Division is the division index, and Comment is commentary about the station. City/Station number one is used
for the workbench.

A line containing a -1 terminates the list of stations.

Generated by Doxygen

130 Freight Car Forwarder (V2) Reference

14.24.1.2 Industry File

The industry file contains industries and yards. The file starts with a line specifying the maximum number of industries:

Industries = Number

where Number is a positive non zero integer.

Followed by a line for each industry or yard. Industry number 0 is used for the repair yard, which is for cars not in service.

Each industry's line contains these fields:
ip, T, STA,NAME, TLEN, ALEN, P, R, H,MIR,C,W,DCL, MAX, LD, EM

Where:

ID Numeric identifier.

T Types are Y for yard or I for industry or O for offline.

STA Station Identifier.

NAME User friendly place name.

TLEN Actual or virtual track length.

ALEN Assignable length.

P Priority for car assignments. If YARD or STAGE, P is n, the number of yard lists to print of type A, P, or D.
R Reloads cars Y for yes or N for no.

H Hazard class for outbound cargo.

MIR Mirror industry or 0 if none.

C Maximum clearance plate.

W Maximum weight class.

DCL Destination Control List of divisions. If YARD or STAGE, DCL can contain:

A Alphabetical listing of cars in yard is permitted.
P Pickup listing of cars in yard is permitted.

D Dropoff listing of cars in yard is permitted.
MAX Maximum allowed car length.
LD Loaded car types accepted.

EM Empty car types accepted.

The industry listing is terminated by a line containing a -1.

Generated by Doxygen

14.24 Data files 131

14.24.1.3 Trains File

The trains file contains the trains used to move the cars. The file starts with a line specifying the maximum number of

trains:
Trains = Number

where Number is a positive non zero integer.

Followed by a record for each train (a newline is acceptable alternative to a comma):
Number, Type, Shift, Done,Name,Maxcars, Divisions, Stops
filler,Onduty,Print,Maxclear, Maxweight, Types, Maxlen,
Description

Where Number is the train number, Type is M for manifest; B for boxmove; W for wayfreight; or P for passenger, Shift is 1;
2;0r 3, Doneis Y for yes or N for no, Name is the train name, Maxcars is the maximum number of cars, Divisions is a set
of division symbols or a wildcard (x),Stops is a space separated list of stations (Boxmove and Wayfrieghts) or industries
(Manifests), filler is an unused slot (use 0), Onduty is the time on duty (the train's departure time) in the format HHMM,
Print is P for print or N for noprint, Maxclear is the maximum clearance number, Maxweight is the maximum weight
number, Types is a set of car types this train can carry, Maxlen is the maximum train length in feet, and Description is a
textual description of the train.

The train listing is terminated by a line containing a -1.

14.24.1.4 Orders File

This file contains lines with pairs:

Name, Order

where Name is the name of a train and Order is a quoted string containing the order.

14.24.1.5 Owners File

This file starts with a count of owners and then lines with with triples:

Initials, Name, Comment

where Initials are the three letter initials of an owner, Name is the full name of the owner, and Comment is some
descriptive text.

14.24.1.6 Car Types File

This is a file with exactly 91 records. Each record contains:
Car Type Code,Car Type Group,Description,pad,Comment

where Car Type Code is one of 91 printable characters, Car Type Group is a single character, Description is a 16
character brief description, pad is 0, and Comment is some descriptive text.

After the car types is the Car type groupings, which map groups of car types into groups using the second single
character, with lines containing these fields:

Car Type Group,Description,Comment

where Car Type Group is a single character, Description is a 16 character brief description, and Comment is some
descriptive text.

Generated by Doxygen

132 Freight Car Forwarder (V2) Reference

14.24.1.7 Cars File

The cars file starts with three numbers, one per line:
Total shifts
Current shift
Max car count

The first number is the total number of shifts, the second is the current shift number (1, 2, or 3), and the third number is
the maximum number of cars in the file.

The remainder of the file is car records. This file must be kept in alphabetical order! Each record contains:
Type,Marks, Number, Home, CarLen,ClearPlate, CarWeight, EmptyWt,

LoadLimit, Loaded,Mirror?,Fixed?, Owner,Done, Last,Moves, Loc,

Dest,NTrips,NAssigns

Where Type is from car types file, Marks is the railroad reporting marks (9 characters max), Number is the car number (8
characters max), Home is car home division (from system file), CarLen is extreme car length, ClearPlate is the clearance
plate (from plate file), CarWeight is car weight class (from weight file), EmptyWt is light weight in tons, LoadLimit is load
limit in tons, Loaded is L for loaded or E for empty, Mirror? is ok to mirror Y for yes or N for no, Fixed? is fixed route Y for
yes or N for no, Owner is car owner's 3 character initials (from owners file), Done is car is done moving for this session Y
for yes or N for no, Last is last train to handle the car from trains file,Moves is actual movements this session,Loc is car's
present location from industry file, Dest car's destination from industry file, NTrips is number of car trips, and NAssigns
is number of car assignments.

14.24.1.8 Statistics File

The statistics is a file generated as an output and should not be hand edited. This file has two formats, V1 and V2. V1 is
the original format used by the original BASIC program. V2 is an improved version that avoids getting the fields jammed
together due to numerical overflow (result numbers too large for the field sizes).

The first line of either format contains the statistics period number. If in the new format (V2), this number is followed by
a comma.

The rest of file file contains lines of four numbers, either space separated (V1) or comma separated (V2): industry index,
car count, car length, and statistics length.

14.24.1.9 Other data files

There are some additional data files, which are not actually loaded into the system. These are the plate, weight, and
hazard files. These are just informational files that are used to map clearance plate, weight class, and hazard levels of
cars.

Generated by Doxygen

Chapter 15

Resistor Program Reference

The Resistor Calculator program aids in calculating dropping resistors for LEDs and low-voltage lamps commonly used
on model railroads. It implements Ohm's Law, shown in the equations below to perform the calculation and then finds
the nearest stock value and also displays the color bands for typical carbon resistors.

Vro
Rarop = % (15.1)
Vdrop = ‘/supply_‘/load (15-2)

The calculator takes three input values, the supply voltage (Vsuppiy), the voltage across the load (Vioaq) (LED or lamp)
and the load current (1) the LED or lamp operates at. These values are entered along with the units they are in. Then
the calculate button is pushed and the results are displayed. The results can also be saved to a text file, which can be
printed or otherwise referred to later.

The main GUI screen of the Resistor Calculator program is shown here:

Supply Voltage: |12.0 3| voits M
Load Voltage: | 2.0 3| Vot M
Load Current: | .02 EIEE M
Resistor Values: Calculated:|5lillil.l]l] Ohms ﬁvailahle:|51D.DD Chms

Calculate |

Minimum Power Rating:| 200 mWatts Bands: [CHN

Ale Edit View Options Help
Calculate Load Resistor Value

Figure 15.1 The main GUI screen of the Resistor Calculator program

134 Resistor Program Reference

Generated by Doxygen

Chapter 16

LocoPull Program Reference

16.1 Basis and Mathematics

This program is based on the information posted by Mark U. on the Yahoo XTrkCad list at the URL http+«
://groups.yahoo.com/group/XTrkCad/message/4983 and the information supplied by rtroop on the
TrainBoard forum in post no. 9 atthe URL http://www.trainboard.com/grapevine/showthread. «
php?t=114497. This is a standalone program that incorporates the formulas presented in Mark U's spreadsheet and
explained in rtroop's message. The formulas are as follows:

E = EunuN (16.2)
Rove = Wapel (16.3)
E
C'0 Grade — \‘R(we (16.4)
Rgrade = WG (16.5)
Rnet at grade = Rave + Rgrade (166)
Runit at grade — WunltG (1 67)
5730
D = — (16.8)

12
B { E — NWynit(G+ F + D)

(16.9)

Cgrade and curve

Rave + Wave(G + Fper degreeD)

Where:

Waunit is the weight of each locomotive in ounces.
A is the adhesion factor generally 25%.
FE.i+ is the tractive effort per unit in ounces.

FE is the net tractive effort in ounces.

http://groups.yahoo.com/group/XTrkCad/message/4983
http://groups.yahoo.com/group/XTrkCad/message/4983
http://www.trainboard.com/grapevine/showthread.php?t=114497
http://www.trainboard.com/grapevine/showthread.php?t=114497

136

LocoPull Program Reference

N is the number of units.

F' is the resistance factor of each car, typically 4% for N scale cars.
Wave is the average weight per car, typically 1 ounce for N scale cars.
Rg.e is the average rolling resistance of each car.

Cy crade i the capacity of the train on level, straight track.

G is the percent of grade.

Ryrqqe is the added rolling resistance of each car due to grade.

Ryet at grade is the net rolling resistance of each car at grade.

r is the track radius in inches.

S' is the scale factor (160 for N scale, 87 for HO scale, etc.).

D is the degree of curvature.

Frer degree is the resistance factor per degree of curvature, typically .04%.

Cgrade and curve 1S the capacity of the train on at grade on a curve.

16.2 The GUI

The main GUI screen of the LocoPull program is shown below. The GUI is broken down into sections:

» The Scale section. The scale is selected here.

The Locomotive Information section. Information about the locomotives is entered here. The number of locomo-
tives, how much they weigh each, and their adhesion factor. The tractive effort for each unit and the net tractive
effort are computed and displayed here. It is assumed that all of the powered engines are the same, typically the
same make and model, with the same weight and same adhesion factor.

The Consist Information. Information about the cars, including their average weight and their average resistance
factor are entered and the rolling rolling resistance is computed and displayed.

The Zero-grade Capacity section. The maximum number of cars that can be pulled on a straight track on a level
grade is computed and displayed here.

The Grade Information section. The percent of grade is entered and the added rolling resistance per car at grade,
the net rolling resistance, and the added resistance per unit are computed and displayed here.

The Curve Information section. The radius of the curve in inches and the rolling resistance per degree of curve
are entered and the degree of curvature is computed and displayed.

The Capacity at Grade and Curve section. This is the maximum number of cars that can be pulled at the grade
and curve specified.

Calculate button. This button performs the calculation and updates all of the displayed values.

Generated by Doxygen

16.2 The GUI 137

Fle Edit View Options Help ‘
Scale: N - o
Locomotive Information
MU Count: 1 —
Locomotive weight {0z.): 3.0 =
Adhesion factor {%): 25 =
Tractive Effort Per Unit {0z.): |III.?5
Met Tractive Effort (Oz.): |III.?5
Consist Information
Average Car Weight {0z.) 4 =
Average Resistance Factor (%): |4 =
Average Car Rolling Resistance {Dz|lil.1]
Zero-grade Capacity (cars): |4
Grade Information
Grade (%) |0 =
Added Ricar at grade {0z fcar): |III.IZI
Met Ricar at grade (Oz./car): |III.1]
Added RfUnit at grade (Oz.funit): |III.III
Curve Infonmation
Radius {in): 0 =
RR per degree {%): 0.04 =
Degree of Curvature (deg): |0
Capacity @ Grade+Curve {cars): |4
Calculate |

Figure 16.1 The main GUI screen of the LocoPull program

16.2.1 The Scale

The scale selection simply select the scale and is used to compute the degree of curvature.

Generated by Doxygen

138 LocoPull Program Reference

16.2.2 Locomotive Information

This section of the GUI gathers information about the locomotives pulling the train. It is assumed that all of the loco-
motives have the same tractive effort, that is they are the same weight and have the same adhesion factor. This would
generally be the case if the locomotives were the make and model. Three inputs are gathered in this section: the number
of locomotives, the weight of each locomotive, and the adhesion factor of the locomotives. Two intermediate outputs are
displayed here: the tractive effort of each locomotive and the net tractive effort of all of the locomotives together.

16.2.3 Consist Information

This section gathers two inputs and displays one intermediate result. The two inputs are the average weight of the cars
and the average rolling resistance factor. The intermediate result is the average car rolling resistance.

16.2.4 Zero-grade capacity

This is simply the net tractive effort divided by the average car rolling resistance. The floor of the result is displayed as
a whole number (since pulling a fraction of a car is not meaningful).

16.2.5 Grade information

One input is gathered and three intermediate results are displayed. The input is the percent of grade and the interme-
diate results displayed are the added rolling resistance at grade of each car, the net rolling resistance per car, and the
added rolling resistance of each locomotive at grade.

16.2.6 Curve information

This section gathers two inputs and displays one intermediate result. The added inputs are the curve radius and the
rolling resistance per degree of curvature and the intermediate result is the degree of curvature.

16.2.7 Capacity and Grade plus Curve

This is just the tractive effort less the tractive effort needed to pull the locomotives themselves divided by the combined
rolling resistance of the average car: base rolling resistance plus the added rolling resistance due to grade, plus the
added rolling resistance due to the curvature. The floor of the result is displayed as a whole number (since pulling a
fraction of a car is not meaningful).

Generated by Doxygen

Chapter 17

Camera Programs Reference

AnyDistance and Closest compute the view angle in both real and scale units. It also computes the effective scale of
the imaging plane, such as the size of a 35mm slide, which might be used as a transparency for model window panes
or locomotive number boards.

Both programs work the same. The only difference is that Closest uses the closest effective focus of the lens and Any«
Distance uses a user specified focus distance. Given the input parameters, the distance, the lens, the scale, and the
film size, a diagram is displayed with the dimensions of the view. This diagram can be printed using the Print... menu
item under the File menu.

New lenses can be entered with the New menu item under the Fi1e menu. The Open... and Save.. menu items can
load and save the set of available lenses.

Both programs solve the equation below and display a diagram illustrating the solution. AnyDistance uses a user entered
value for D and Closest uses the closest focusing distance for the selected lens.

0
Wyiew = (DS)2 tan(§) (17.1)
Where:
Weyiew = The scale view width.
D = The distance between the scene and the camera lens.
S = The model scale factor.
and
8 = The lens view angle.

The main GUI screen of the AnyDistance program is shown below. The Closest program is much the same, except that
the distance parameter is omitted.

140 Camera Programs Reference

| |
4| CameraScripts | ! | d

Hle Edit View Options Help
o 126.240526197 scale feet, 17.3324943354 real inches N]

(Scene focal plane)

Distance (inches):lZD j‘Lens:lMinolta 5omm | Scale:lHD | Film Image Size:|35mm ¥ Compute

| Minolta 50mm at 20 inches]
]]

Figure 17.1 The main GUI screen of the AnyDistance program

Generated by Doxygen

Chapter 18

Dispatcher Tutorial

18.1 A "Simple Mode" CTC Panel

This tutorial will go through the steps of creating a simple CTC panel for a passing siding. First, after starting up the
Dispatcher program, we will click on the New CTC Window toolbar button and get a New CTCPanel dialog box, as
shown below. See Section Creating a new CTC Panel for more information.

Hame: Simple Siding
Width: 780 =
Height: 550 =

W Simple Mode
Has CM/RI? no

CHM/RI Port: s [N (T
CHM/RI Speed: SE00
CMR{l Retres: |10000
Has MRD? YBs

B 1L) [[

‘ Create Cancel Help

=

Figure 18.1 Creating a new Simple Mode CTC Panel

142 Dispatcher Tutorial

We fill in a name and select the Simple Mode check button. Clicking on Create gives us the blank panel shown
below.

HAle Edit View Options Panel MRD Hem‘

Figure 18.2 Initial blank panel

Now we can start adding track work and control elements. But first a brief discussion about how things are structured.
First of all every object has a unique name and every object is in a named control point.

A "control point" is a collection of track work elements and control panel elements that relate to a single controlled
feature, typically a turnout of some sort. The control point usually includes a code button, which is a button that initiates
some change in the track work (turnouts, signals, etc.), based upon the settings of one or more control panel elements.
In this tutorial we will be creating four control points, CP1, CP2, Main, and Siding. CP1 is the turnout at the Western
(left) end of the siding, CP2 is the turnout at the Eastern (right) end of the siding, Main is the mainline trackage, and
Siding is the siding track. The Main and Siding control points won't have any control panel objects and are only being
used to contain the simple track elements. These are essentially "dummy" control points and are just being used as
containers for track work that does not contain any centrally controllable track work.

First we will create turnout 1 (named Switch1) by selecting Add Ob ject on the Panel menu, which gives us the Add
Panel Object to panel dialog box, shown below. See Section Adding, Editing, and deleting elements to CTC Panel Windows
for more information.

Generated by Doxygen

18.1 A "Simple Mode" CTC Panel 143

Hame: Switchl
Object Type

~r SWHate ~- SIGPlate ., CodeButton - Toggle ~ PushButton
~ Lamp ~r CTCLabel ., StraightBlock - EndBumper - CurvedBlock
~ HiddenBlock ~ Stub¥ard - ThroughYard - Crossing # Switch

~- 3cissorCrossover - - Crossover .- SingleSlip ~ DoubleSlip - ThreeWay3W
~ Signal ~- Schlahel

Control Point:

’:(:ID 3 Use Crosshairs |

Label:
Orientation:
Ripped?

State Script:

Occupied Script:

Cancel | Redraw |

Figure 18.3 Creating Turnout 1

We will "flip" the turnout to give it the proper orientation. Turnouts can be flipped and can also be rotated to one of eight
positions (45 degree increments). We will use the cross hairs to roughly position the turnout, as shown below.

Generated by Doxygen

144 Dispatcher Tutorial

Fle Edit View Options Panel MRD @ Na(;‘:: o [Sicht
ject Typ
- SWHate . SIGPate . CodeButton ., Toggle « P
- Lamp - CTClabel . StraightBlock - EndBumper . O
~ HiddenBlock + SwhbYard . ThroughYand -, Crossing 4 §
« ScissorCrossover - Crossover .. SingleSlip - DoubleSlip . T
- Signal . Schlabel

/

1

Control Point: [cp1

’7x:|ae 0 EIES 3 uset
Label: [

Orientation: 0

RAipped? yes

State Script:

Occupied Script:

| | cancel | Redraw Help

Figure 18.4 Positioning Turnout 1

Clicking the Add button places the turnout on the track work schematic, as shown below.

Hle Edit View Options Panel MRD ﬂelp|

-ﬁw

Figure 18.5 Turnout 1 placed on the panel

You can fine tune the location of the object by making small changes to the X and Y coordinates after you have roughly
placed the object using the cross hairs. You can always go back and edit an object by using the Edit Object menu
item on the Panel menu and then selecting the name of the object to edit.

Generated by Doxygen

18.1 A "Simple Mode" CTC Panel 145

Next, we will add a switch plate (named SwitchPlate1), again by selecting Add Object on the Panel menu, again
using the @ Add Panel Object to panel dialog box, shown below.

Hame: SwitchPlatel
Ohject Type
4 SWPate ~- SIGPlate ., CodeButton - Toggle ~- PushButton
~r Lamp ~r CTCLabel -, StraightBlock - EndBumper - CurvedBlock
~~ HiddenBlock ~r Stub¥ard -, Through¥ard - Crossing ~r Switch
~r ScissorCrossover - Crossover - SingleSlip ~r DoubleSlip - ThreeWay SW
~r Signal ~r SchlLabel

Control Point: -

(x:pm.u EkgE 2 Use crosshairs

Label: 1
MRD2-U S#: 020000008
Switch Hame: Switch|

Hormal Script:

Reverse Script:

Cancel | Redraw |

Figure 18.6 Adding a Switch Plate

We will enter the name of the turnout it controls (Switch1) and the serial number of the MRD2-U board that will be
controlling the Switch-It board powering the switch motor. Again we will use the cross hairs to place the switch plate.
The result is shown below.

Generated by Doxygen

146 Dispatcher Tutorial

= [
Hle Edit View Options Panel MRD Help|

Figure 18.7 Switch Plate 1 placed on the panel

Finally, we will add a code button, as shown below.

Generated by Doxygen

18.1 A "Simple Mode" CTC Panel 147

Name: |Coddi
Object Type

~r SWHate ~ 3IGPlate 4 CodeButton - Toggle ~- PushButton
~r Lamp ~r CTCLabel -, StraightBlock - EndBumper - CurvedBlock
~ HiddenBlock ~ Stub¥ard - Through¥ard - Crossing ~r Switch

- ScissorCrossover - Crossover - SingleSlip ~- DoubleSlip - ThreeWay3W
~r Signal ~ 3chlabel

Control Point: -

(x:hm 0 S vi[1480 2 use Crosshairs

Action Script:

Cancel | Redraw |

Figure 18.8 Adding a code button

Fle Edit View Options Panel MRD ﬂel|1|
v

4
1
] =

Figure 18.9 Code button 1 placed on the panel

We repeat this process to add the mainline, the siding, and the second turnout, with its switch plate and code button.

Generated by Doxygen

148 Dispatcher Tutorial

Place the second turnout next, then add the mainline and the siding tracks. Once the turnouts have been placed, the
locations of the endpoints of the straight track sections are easy to select. Finally we get the panel shown below.

Fle Edit Miew Options Panel MRD ﬂelp‘
;

—

Figure 18.10 The completed panel

Once the panel has been completed, we can use the Wrap As menu item under the Fi1e menu to create a "wrapped"
version of the generated program. This is a self-contained, stand-alone executable program that implements the CTC
panel. See Section Wrapped CTC Panel Programs for more information.

18.2 A LCC Example

In this tutorial we will transfer a layout designed in XtrackCAD to a dispatcher CTC panel. XtrackCAD implements five
type of "Layout Control" objects. These are objects that can be manipulated and stored with a layout file that hold layout
control information (called scripts). These objects are:

« Blocks. Blocks are named groupings of track that have a script that determines block occupancy.

» Switch Motors. Switch Motors are named objects associated with a turnout and have three scripts: a normal action
script, a reverse action script, and a point sense script. The normal action script activates a switch machine to
align the points to the normal position (generally aligned to the main route) and the reverse action script activates
a switch machine to align the points to the reverse position (generally aligned to the spur route). The point sense
script returns a value indicating the current alignment of the points (eg normal or reverse).

Generated by Doxygen

18.2 A LCC Example

149

« Signals. Signals are devices that display various aspects that indicate train movement permissions. Signals have
a location, an orientation, a number of heads (one, two, or three), and one or more aspects, which have a name

and a script.

» Sensors. Sensors are just single on or off state. A sensor could be a push button switch or some sort of device
that senses something on the layout (generally not block occupancy, since that is already handled by the block

object).

» Controls. Controls are just a single actuator or other on or off device (like a lamp). Could be some track side

animation (like a log loader or a crossing gate).

XtrackCAD imposes no particular syntax for the scripts. For layouts using LCC and Dispatcher, the scripts are defined
as one or two LCC event numbers. A LCC event number is a 64-bit number formatted as eight pairs of hexadecimal
digits separated by periods. For actions, it is a single event id that is consumed by the actuator (eg switch machine or
signal). For sensors (eg block detection sensors, point sensors), it is a pair of event numbers separated by a colon.
These event numbers are produced by the sensor for each of two states. For blocks, the first event number is produced
when the block becomes occupied and the second event number is produced when the block becomes unoccupied. For
point sense scripts the first event is produced when the points become normal aligned and the second event is produced

when the points become reverse aligned.

The layout we will add is a simple passing siding on a main line as shown below.

File Edit View Add Change Draw Manage Options Macro Window Help
ESENEY e
(]]e] AL Ao B AR &) @) [uven | [HEEOEEEEERE
D W A R R B A M W N W W MR W W WA W A W A
o= g
] . " Emeey -
E { t - t = i
] = = G B
R N N o o o 1 B B B R R R R R R R R NN R N R AR RN RN R RRRRRE R R
' 1 | 2 3 4 5' 6" 7 8
Zoom : 7:1 X : 18.500000 Y : 46.250000 Select track to describe

Figure 18.11 Simple passing siding in XtrackCAD

We have already filled in the control elements for this layout in the XtrackCAD layout file.

Generated by Doxygen

150 Dispatcher Tutorial

Name Tracks Done

%% WestMain 1
%5 OSwest 3
*% CenterMain 4
%% siding 67,89 10
5
2
3
5

%% OSEast
%% EastMain
West
East
CP1E
CP1sW
CP1IMW
CP2w
CP2SE
CP2ME

Fo e o o o o > >

Figure 18.12 Passing Siding Layout control elements

After loading the XtrackCAD file into the Dispatcher, the dispatcher shows a graph of the layout, detailing the various
track and control elements and their connectedness.

=

File Edit View Options Windows Help |
& & & [e B
New CTC Window | Load XTrkCad File | Open CTC File | Find Node | Print Node Graph Quit

O—C—6O—"0C—~0 & ®

@ & © ®

a
Figure 18.13 Passing Siding Layout as a graph in Dispatcher

Next we will create a fresh CTC Panel by clicking on the "New CTC Window" button. This gives us a "New CTCPanel"
dialog box.

Generated by Doxygen

18.2 A LCC Example 151

Name: |I._Inname+:|
Width: 780
Height: 550

[Simple Mode

[OpenLCB Mode

OpenLCB Transport Cunstruct-::r|

Constructor Dpts|

Has CM/RI? no

CM/RI Port: fdev/tty50
CM/RI Speed: 9600

CMR/I Retries: 10000

Has AZATRAX?T no

Has CTl Acela? no

CTI Acela Port: fdev/ttyACMO

Create Cancel

Figure 18.14 New CTCPanel dialog

We will give the CTC Panel a name (Passing Siding), select the OpenLCB Mode checkbox, and fill in the OpenLCB
transport constructor and its opts.

Generated by Doxygen

152 Dispatcher Tutorial

Name: [Passing siding

Width: 780

Height: 550

[Simple Mode

N OpenLCB Mode

OpenLCB Transport Constructor|CANGridConnectOverTcp Select

Constructor Opts|-port 12021 -nid 05:01:01:01:22:00 -hos Select

Has CM/RI? no

CM/RI Port: Jdev/ttyS0
CM/RI Speed: 9600

CMR/I Retries: 10000

Has AZATRAX? no

Has CTl Acela? no

CTI Acela Port: Jdev/ttyACMO

Create Cancel

Figure 18.15 New CTCPanel dialog, updated

After clicking the Create button we have a new fresh CTC Panel window.

Generated by Doxygen

18.2 A LCC Example 153

File Edit View Options Panel

Figure 18.16 Empty Passing Siding CTC Panel

First we will transfer track segment 1, the western most segment of the main line just before the siding. We will use the
right button to get the context menu and then select "Add To Panel" on this menu.

Generated by Doxygen

154 Dispatcher Tutorial

New CTC Window | Load XTrkCad Fi

I
Gﬂdﬂ Info

—_—
Add To Panel /P\

@ @

Figure 18.17 Context menu for track element 1

This gives us an "Add Panel Object to panel” dialog box. Notice how various fields are preloaded. We will shortly change
a few things: remove the unneeded label, add a control point, and position the track on the schematic using the cross
hairs.

Generated by Doxygen

18.2 A LCC Example 155

Name: WestMain
bject Type

T s T s

. # StraightBlock ™ EndBumper ™ CurvedBlock
" HiddenBlock StubYard - Throughyard ™ +*

o o P P

o

[4]
Control Point:
—First Coord

X0 : Use Crosshairs

—Second Coord

%0 : = Use Crosshairs

Label: WestMain

Position: Ibelow =
Occupied EventID: 05.01.01.01.22.00.00.00

Mot Occupied EventlD: 05.01.01.01.22.00.00.01

Figure 18.18 Initial Add Panel Object to panel dialog box for segment 1

And after some minor updates, we have this:

Generated by Doxygen

156 Dispatcher Tutorial

Name: WestMain
Object Type

s T s

StraightBlock ™ EndBumper ™ CurvedBlock
HiddenBlock StubYard - Throughyard ™ +*

o P P

Control Point: Mainline -
—First Coord

%:120.0 =:120.0 Use Crosshairs

—Second Coord
¥:118.0 =¥:120.0 Use Crosshairs

Label:

Position: below =
Occupied EventlD: 05.01.01.01.22.00.00.00

Mot Occupied EventlD: 05.01.01.01.22.00.00.01

Add Cancel || Redraw | Help

Figure 18.19 Updated Add Panel Object to panel dialog box for segment 1

Next we will add the western turnout. This is track segment 3. Again we right click on the segment node on the
Dispatcher main window and select "Add to Panel". Note how most of the fields are filled in from the layout file.

Generated by Doxygen

18.2 A LCC Example

157

Figure 18.20 Initial Add Panel Object to panel dialog box for segment 3

Name:
Object Type

S

A
s

Switch

AT

N\

West
Control Point:

Mainline

-

’;(: 20.0

(12000

= Use Crosshairs

Label:

Orientation:

Flipped?

State Normal EventlD:
State Reversed EventlD:
Occupied EventlD:

Not Occupied EventlD:

—

Cancel

West

0

no

05.01.01.01.22.00.01.02
05.01.01.01.22.00.01.03
05.01.01.01.22.00.00.02
05.01.01.01.22.00.00.03

Redraw Help

Generated by Doxygen

158

Dispatcher Tutorial

Name:
Object Type

S

A
s

Switch

AT

/7

West

Control Point:

CPWest

F{: 124.0 (12000

Label:

Orientation:

Flipped?

State Normal EventlD:
State Reversed EventlD:
Occupied EventlD:

Not Occupied EventlD:

Add Cancel

West

0

yes,

05.01.01.01.22.00.01.02
05.01.01.01.22.00.01.03
05.01.01.01.22.00.00.02
05.01.01.01.22.00.00.03

Redraw Help

Figure 18.21 Updated Add Panel Object to panel dialog box for segment 3

Because this is a turnout with a switch motor, we will also add a switch plate. The only additional work needed is

positioning it.

Generated by Doxygen

18.2 A LCC Example

159

Name:

West_Plate

bject Type
SWPlate

Control Point:

CPWest]

ﬁc:|145.u

2v:90.0 %! Use Crosshairs

Label:

Normal EventlD:

Reverse EventlD:

MNormal Indicator On EventlD:
Mormal Indicator Off EventlD:
Center Indicator On EventlD:
Center Indicator Off EventID:

Reverse Indicator On EventlD:
Reverse Indicator Off EventlD:

West

05.01.01.01.22.00.01.00
05.01.01.01.22.00.01.01
05.01.01.01.22.00.01.02
05.01.01.01.22.00.01.03

05.01.01.01.22.00.01.03
05.01.01.01.22.00.01.02

" Update Cancel Redraw Help

=l

Figure 18.22 Updated Add Panel Object to panel dialog box for turnout switch plate

Our panel is now like this:

Generated by Doxygen

160 Dispatcher Tutorial

File Edit View Options Panel

Figure 18.23 Updated CTC Panel

Finally we will add one of the signals, CP1E, which is node number 19.

Generated by Doxygen

18.2 A LCC Example 161

Name:
bject Type

L
e
L
P
*

Control Point: CPWest]

’;(: 145.0 = ¥:/90.0 = Use Crosshairs

Label: CP1E
Orientation: 0
Heads: 2

Signal Aspect Events

Aspect 1 | Aspect 2 | Aspect 3 | Aspect 4
When this event occurs|05.01.01.01.22.00.02.00
the following aspect will be displayed.|red red

Delete Aspect

Add ancther aspect

Cancel Redraw

Figure 18.24 Initial Add Panel Object dialog box for CP1E

Generated by Doxygen

162

Dispatcher Tutorial

This gives us this panel:

Name:

bject Type

L
e
L
P
*

Control Point: CPWest

-

=¥:140.0

’;(: 75.0

ﬂ .
= Use Crosshairs

Label:

Orientation:

Heads:

Signal Aspect Events
Aspect 1 | Aspect 2 | Aspect 3 | Aspect 4

When this event occurs/05.01.01.01.22.00.02.00

the following aspect will be displayed.|red red
Delete Aspect

Add ancther aspect

Cancel

e]

Figure 18.25 Updated Add Panel Object dialog box for CP1E

Generated by Doxygen

18.2 A LCC Example 163

File Edit View Options Panel Help

Figure 18.26 Panel with signal CP1E added.

The remaining track elements and switch plates can be added by repeating these steps.

Generated by Doxygen

164 Dispatcher Tutorial

File Edit View Options Panel

Figure 18.27 Panel with all elements from the layout file added.

Finally, the signal plates and code buttons can be added using the Panel menu on the CTC Panel.

Generated by Doxygen

18.2 A LCC Example 165

File Edit View Options Panel

Figure 18.28 Completed panel.

Now we can save the file and wrap it into a ready to run executable.

Generated by Doxygen

166 Dispatcher Tutorial

Generated by Doxygen

Chapter 19

Dispatcher Reference

The Dispatcher program is used to create computerized CTC (Centralized Traffic Control) panels, to be used by dis-
patchers as part of a CATC (Computer Assisted Traffic Control) system to manage traffic flow for a model railroad. ' A
computerized CTC panel typically contains a track work schematic and a collection of control elements (such as switch
plates, signal plates, toggle switches, push buttons, etc.) that control the track work and track side signals. In addition to
creating and editing CTC panels, the Dispatcher program can read in an XTrackCAD layout file and create a compressed
graph of the track work and this graph can be used as a guide while creating CTC panels.

The Dispatcher program can use a Layout Control Database to manage the various layout control elements. This
database is also used by the OpenLCB (see OpenLCB Program Reference) and the Offline LCC Node Editor (see
Offline LCC Node Editor Reference) programs.

19.1 Main GUI Screen

The main GUI window of the Dispatcher program is shown below. It consists of a standard menu bar, a tool bar, and an
area for track work graph display. A track work graph is something computer scientists call a "directed graph". A directed
graph is a data structure consisting of nodes, with links to other nodes. In this case each node is a piece of track work
and the links are the connections between pieces of track work and thus indicate the adjacency of track work nodes (and
how the pieces of track work interconnect with each other). In the case of simple track work (such as straight sections
or curved sections), there are one (if the section "dead ends") or two links and in the case of complex track work (such
as turnouts and crossings), there are three or more links. The graph is "compressed”, where adjacent pieces of simple
track work are consolidated into single nodes.

"It is also possible to use the Dispatcher program to create the artwork for a “manual” CTC panel using mechanical switches mounted on a panel.

168 Dispatcher Reference

File Edit View Options Wndows ﬂelp‘

&

New CTC Window

&

Load XTrkCad File

]

Open CTC Fle

&

Find Hode

=
Print Mode Graph

B8

Quit

New CTC Panel Window I

Figure 19.1 Main Dispatcher Window

19.1.1 Track work Node Graphs

Once the compressed graph is built (upon loading a layout file), it is displayed on the main GUI screen as numbered
circles (nodes) connected by lines (links). A graphic of the piece of track work is also drawn. Left clicking on a node
displays a pop-up containing information about the track work node. Right clicking on a node pops up a menu of actions
involving the node. 2 Left clicking on a link displays a pop-up containing information about the link. The node numbers

are the track element numbers assigned by XTrackCad.

The outlines of the nodes are color coded:

+ Blue for block nodes.

» Orange for turnouts with switch motors.
» Green for signals.

« Light Green for sensors.

* Light Blue for controls.

+ and Black for everything else.

2Currently two menu items are defined, one to display the node info and the other to add it to a panel.

Generated by Doxygen

19.1 Main GUI Screen 169

19.1.1.1 Loading a Layout

A XTrackCAD layout file is loaded either with the Load XTrkCad File tool bar button or with the Load... item on the
File menu. ltis also possible to load a XTrackCAD layout file during program start up using the —xt rkcad command
line option.

In all cases, the layout's track work is loaded as a track work graph and displayed in the track work graph display area.
Dispatcher then asks if XTrkCad itself should be started. This might be useful as it gives a display of the actual layout
on your screen, which can be referred to when creating CTC panels.

19.1.1.2 Finding Nodes

A node can be "found" by its number. Finding a node scrolls the node graph to make the node visible and the node is
highlighted.

19.1.1.3 Printing Node Graphs

A node graph can be printed to provide a hard-copy reference of the node graph.

19.1.2 Creating a new CTC Panel

A new CTC Panel is created with the New CTC Window toolbar button or the New CTC Panel Window entry under
the File menu. A New CTC Panel Dialog, as shown below, is displayed. This dialog box asks the user for some
basic information about the new panel. This includes the name (title) of the panel, its initial width and height, whether it
connects to a C/MRI bus and information about that bus, as well as whether it uses Azatrax devices or if it using LCC
(OpenLCB mode). ?

|Unnamed
780

[OpenLCB Mod
OpenLCB Transport Cﬂnstructﬂr|

Constructor 0pt5|

Has CM/RI? no

CM/RI Port: (devfttyS0
CM/RI Speed: 9600

CMRyI Retries: 110000

Has AZATRAX? no

Has CTI Acela? no

CTl Acela Port: [dev/ttyACMD

[a[p][4 [« |4

[4 4[4

Create ‘ Cancel

-
Figure 19.2 New CTC Panel Dialog

SMRD2-U, MRD2-S, SR4 or other devices made by Azatrax.

Generated by Doxygen

170 Dispatcher Reference

There is also a check button to select "Simple Mode". "Simple Mode" simply means that the panel will be a simple
one with canned code to use Azatrax USB devices to actuate switch machines, either directly or via NCE's Switch-It
(or similar) units. The canned and auto-generated code associates a Switch Plate with a switch and associates a Code
Button with 1 or more Switch Plates and Signal Plates. 4 In "Simple Mode", all of the Ul elements relating to writing Tcl
code are disabled and all of the Tcl code is completely generated by the Dispatcher program. All the user does is place
the track work elements on the schematic and the control elements on the control panel and provide the serial number
of the MRD2-U or other Azatrax devices that are being used to control turnouts and the names of the turnouts being
controlled.

It is also possible now to build a CTC panel that connects to an OpenLCB network (either on a CAN bus or a Tcp/Ip
network) and use the Event Exchange protocol to connect the schematic track work and control elements on the CTC
panel with physical OpenLCB nodes with 1/O pins connected to sensors, actuators, and signals on your layout. Selecting
"OpenLCB mode" and supplying the transport information allows for this. All of the action code for the panel objects are
replaced with OpenLCB events and there is no "Main Loop" (as discussed below).

What is actually created is a Tcl/Tk program that uses parts of the library of Tcl/Tk and C++ code included with the
Model Railroad System that will implement a CTC Panel, which contains two display sections: a track work schematic
and a control panel. The track work schematic is in the upper half of the panel and has a black background with white
(red when occupied) track work. Signals with one, two, or three heads can be added to the track work schematic. The
control panel is in the lower half and has a dark green background. The control panel can have switch plates, signal
plates, toggle switches, push buttons, code buttons, and indicator lamps.

The CTC Panel can be used by a dispatcher using a computer screen and pointing device (such as a mouse or touch
pad) to select and manipulate control elements. The track work on a CTC Panel will reflect the actual track conditions
(occupied or not, signal aspects, and turnout states).

19.1.3 Opening an existing CTC Panel

Existing CTC Panel programs are the specifically formatted Tcl/Tk programs created by the Dispatcher program. They
can be opened and edited using the Open CTC File toolbar button or the Open... entry under the File menu or
specified on the Dispatcher's command line. There are three sections of the code that are "loaded" into the Dispatcher
program: the collection of CTC Panel elements, the information about the (optional) C/MRI network or Azatrax USB
devices, and the user code associated with the panel.

19.2 Configurable Options

The configurable options can be set or changed with the Edit Configuration menu entry under the Options
menu. These configurable options can be saved with the Save Configuration menu entry under the Options
menu and can be loaded with the Load Configuration menu entry. At present there are three configuration
options: Use External Editor, which has a boolean value (true or false), External Editor, which is a
command line that starts an external editor (the name of the file to edit is appended to this command line), and
Tcl Kit, which is the name of the Tclkit file to use for the run time when wrapping panel programs (see Section
Wrapped CTC Panel Programs).

4The Signal Plates don’t do anything but change their panel lights.

Generated by Doxygen

19.3 CTC Panel Windows 171

19.3 CTC Panel Windows

A freshly created CTC Panel window is shown below. °

Ele Edit View Options Panel CiMn ﬂelp|

Add Panel Object

Figure 19.3 Empty CTC Panel Window

The pink square at the lower left indicates that the file is in a modified state and has not been saved to disk. Sav-
ing the file is done with the Save and Save As... menu items under the File menu. It is also possible to
create a standalone executable program file using the Wrap As... menu item under the File menu (see Section
Wrapped CTC Panel Programs for more information).

19.3.1 Menu items available when editing a CTC Panel Window

19.3.1.1 File menu

The File contains entries to create a new CTC Panel Window, load an XTrkCad file, open a CTC Panel Window, save
the current CTC Panel Window, wrap the current CTC Panel Window, close the current CTC Panel Window, and exit.
Attempting to close a modified CTC Panel Window will cause a save confirmation window, allowing you to save your
work. There are also menu items to print the panel graphics as a PDF page or to export either the schematic or control
panel as a bitmap image. These files can be printed and used as the artwork for a manual CTC panel using mechanical
switches.

5When the program is run on its own, the Panel and C/Mri menus will be absent.

Generated by Doxygen

172 Dispatcher Reference

19.3.1.2 Edit menu

In addition to the standard edit menu entries, there are four extra entries: ©

(Re-)Generate Main Loop This entry generates (or regenerates) the main loop. The basic loop read all of the input
ports of all of the C/MRI nodes, invokes all of the track work elements, and then writes all of the output ports of all
of the C/MRI nodes. The loop is an endless real time loop. It is necessary to "fill in" the logic of the CTC Panel.

User Code This entry opens an editor to edit the user code section of the CTC Panel program.

Modules This entry inserts selected helper modules into the user code section of the CTC Panel program. These are
all in name spaces and are SNIT types:

Track Work types This inserts two SNIT types, one for blocks (usable for simple track work) and one for switches
(turnouts).

Switch Plate type This inserts a SNIT type to handle switch plates.

Signals This inserts SNIT types to help with signals:

Two Aspect Color Light Use this module if you are using two lamp or LED (red and green) signals. One,
two, and three head signals are supported.

Three Aspect Color Light Use this module if you are using three lamp or LED (red, yellow, and green)
signals. One, two, and three head signals are supported.

Three Aspect Search Light Use this module if you are using bi-color LEDs (red/green — either three lead
or two lead) signals. One, two, and three head signals are supported.

Signal Plate type This type handles Signal Plates.

Control Point type Use this type for Code Button action code.

Radio Group Type Use this type to collect a group of push buttons into an exclusive group where only one button
is "on" at a time. Used to implement a software track selection matrix for a yard or terminal.

Additional Packages This entry inserts selected additional packages into the CTC Panel program. The available
packages are:

XPressNet This loads the XPressNet DCC package.
NCE This loads the NCE DCC package.

Raildriver Client This loads the Raildriver Client package.

19.3.1.3 View menu

The View menu contains entries to zoom in, zoom to a specific level, and zoom out. This allows you to grow or shrink
the display. This lets the dispatcher get a view of a large layout in a single view or to zoom in on a specific control point
as needed. This menu is also available in the generated CTC Panel program.

19.3.1.4 Panel menu

The Panel menu contains entries to add, edit, and delete panel elements (both track work and control) and also has
an entry to edit the overall panel's configuration.

5These items are disabled when in "Simple Mode" or "OpenLCB Mode".

Generated by Doxygen

19.4 CTC Panel Code 173

19.3.1.5 C/Mri menu

The C/Mri menu contains entries to add, edit, and delete C/MRI nodes on the C/MRI bus. The C/MRI nodes contain
input and output ports that can be connected to things like occupancy detectors, turnout point state switches, signal
LEDs (or lamps), and switch machine motors. They can also be connected to manual controls and indicators on control
panels mounted over or beside the layout (eg "local" towers).

19.3.1.6 Azatrax menu

The Azatrax menu contains entries to add, edit, and delete Azatrax nodes on the USB bus. The Azatrax nodes
contain sensors or control outputs that can be used to sense trains or operate signal LEDs (or lamps) or switch machine
motors.

19.4 CTC Panel Code

The Dispatcher program creates Tcl scripts (programs). That is, each CTC Panel Window is implemented as a Tcl/Tk
script file and in fact this is what is created when the window is "saved". The script file contains generated code, code
that is created by the Dispatcher program (some of which is pre-written code that is copied to the script file). And some
of the code is created by you the user of the program. 7 This code implements the CTC Panel that your model railroad's
dispatcher will use to control some part of your model railroad during an operating session.

19.4.1 Wrapped CTC Panel Programs

The Wrap As... menu item on the file menu saves the CTC Panel Code as a StarPack, a self-contained executable
program file that runs a Tcl/Tk program. This program can be run as-is, without needing any support files or code
installed on the target system. You can create your panel on your desktop computer, which has the Model Railroad
System installed and then you can "wrap" your panel program and then you can copy the generated executable program
to a thumb drive and transfer the program to the computer used as your dispatcher's screen. The only 'gotcha’ is that
the computer used as your dispatcher's screen should be generally the same kind of computer as the desktop computer
used to wrap the panel program — eg both should be 32-bit MS-Windows machines or both be 64-bit Linux machines,
etc. You should also "save" your CTC Panel, if only to allow for future modifications and to document your CTC Panel.

19.4.2 Generated Code

The generated code consists of some prefix code including comments containing the panel's configuration, followed by
code to load various packages used by the CTC Panel code, code to implement the panel itself, and code to initialize
the C/MRI bus and initialize the nodes (boards) on the bus or code to initialize the Azatrax devices. Or code to connect
to a LCC network, if the panel was created in OpenLCB mode.

7When running in "Simple Mode" or "OpenLCB mode" you won’t be writing any code. All of the code will be generated by the Dispatcher program.

Generated by Doxygen

174 Dispatcher Reference

19.4.2.1 Configuring CTC Panel Windows

The configuration of CTC Panel Windows can be changed using the Configure entry of the Panel menu. This
menu entry displays the Edit Panel Options Dialog, as shown below.

Name: |unnamed
Width: 780
Height: 550

[Simple Mode

Constructor 0pt5|

Has CM/RI? no

CM/RI Port: [devfttyS1
CM/RI Speed: 9600

CM/RI Retries: 11000

Has AZATRAX? no

Has CTI Acela? no

CTI Acela Port: [devittyACMO

[Ap][4 [l4 |4

|4 4 (|4

Update ‘ Cancel

- |

Figure 19.4 Edit Panel Options Dialog

This dialog box allows changing all of the same options as were set when the panel was created (see Section
Creating a new CTC Panel).

19.4.2.2 Adding, Editing, and deleting elements to CTC Panel Windows

CTC Panel elements can be added, edited, or deleted with the Add, Edit, and Delete entries of the Panel menu.
There are twenty element types to select from. CTC Panel track work elements can also be added directly from the
Track work Node Graphs using the right button node menu. Every CTC Panel element has a unique name, is part of a
control point, 8 and has an X, Y location on either the track work schematic (for track work elements) or the control area
(for control elements). The X, Y location(s) can be either set by entering the coordinates directly (this allows precise
positioning) or by using cross hairs to position elements using the pointer device (eg mouse). ® Additionally, element
specific options are available for each element. When entering Switch Plates in "Simple Mode", there is a provision for
entering the type, serial number, sub-elements of the Azatrax device and the name of the track work switch. All of the
command script entries are disabled, although the generated scriptlets are shown (for the curious).

Additionally, when in "OpenLCB mode", instead of scripts, various elements will have entries for LCC event ids instead.
LCC event ids are 64-bit numbers, represented as 8 pairs of hexadecimal digits separated by periods. For track work,
there are two LCC event ids used for occupancy, one for the occupied event (a train enters the block) and one for the

8For mainline trackage a control point of “Main” can be used.
9 After placing a device with the cross hairs, it is possible to adjust the coordinates for added precision.

Generated by Doxygen

19.4 CTC Panel Code 175

not occupied event (a train leaves the block). For turnouts there are a pair of event ids for the point position sensor: one
for the normal position and one for the reverse position. For control elements, there are event ids to be produced for
lever positions or button pushes and event ids that will be consumed to update the indications. And for signals there is
a list of aspects: the list of colors (top to bottom) and the event id to be consumed to display that aspect. See section
Using the Dispatcher program with layouts designed in XtrackCAD for specific use with XtrackCAD.

19.4.2.3 Adding, Editing, and deleting C/Mri nodes to CTC Pane Windows

C/Mri nodes can be added, edited, or deleted with the Add, Edit, and Delete entries of the C/Mri menu. Each
node has a unique name and unique UA (address). There are three supported board types: SMINI (Super Mini), USIC
(Universal Serial Interface Card) and SUSIC (Super Universal Serial Interface Card).

19.4.2.4 Adding, Editing, and deleting Azatrax nodes to CTC Panel Windows

Azatrax nodes can be added, edited, or deleted with the Add, Edit, and Delete entries of the Azatrax menu.
Each node has a unique name and unique serial number.

19.4.3 User Code

The user code is editable with the User Code entry of the Edit menu. This menu entry either starts a simple edit
window or starts a user-specified external editor (See Section Configurable Options). In addition to directly editing the
user code, one or more pre-written modules can be inserted and a skeleton main loop can be created. When using the
program in "Simple Mode" the user code menu items are disabled. All code is generated by the Dispatcher program. The
functions and logic are limited to the canned "Simple Mode" functionality. It is possible to later turn off "Simple Mode" in
the panel's configuration (see Section Configuring CTC Panel Windows). When using the program in "OpenLCB mode"
the user code menu items are also disabled. All code is generated by the Dispatcher program. It is presumed that any
special logic needed will be handled by a logic node on the LCC network (such as the OpenLCB_Logic daemon or logic
blocks in a Tower-LCC node).

19.4.3.1 Insert-able Modules

These are a collection of SNIT types, in name spaces, that encapsulate various common types of things that a CTC
Panel implements, including blocks, turnouts, signals, signal plates, control points, and radio groups (commonly used
to implement a software track selection matrix for a yard or terminal). See Insertable Module Library for details of these
code modules.

19.4.3.2 The Main Loop

A skeleton main loop can be generated, but you will need to modify it to implement the actual logic of your CTC Panels.
The basic main loop is an endless, "real time" loop, that reads in all of the input ports, invokes all of the track work, and
then writes all of the output ports. It is necessary to decode the input bytes into bit fields which can be stored in various
types. The occupation state and switch point state information sensed from the inputs is used, along with the settings
of the control elements (switch plates, signal plates, etc.) is tested and logical tests are applied to determine things like
signal aspects and switch motor values, etc. These values are then packed into the vectors (lists) of output bytes which
are then written to the output ports.

Generated by Doxygen

176

Dispatcher Reference

19.5 Add CMRI Node Dialog

This dialog box adds a C/MRI node to the C/MRI bus. These nodes are the SUSIC, USIC, SMINI boards. Each board
has a name and an address (0 to 127). If the board is a SMINI board, it can have a count of yellow signals and a yellow
signal map and for SUSIC and USIC nodes, it has a count on input and output ports and a map of card types. There
is also a delay value. " The name will be a SNIT object instance name and should start with a letter and contain only

letters, digits, period, underscore, or dash.

Hame:

Address:

Board Type:

Yellow Sighals

Input ports:

Output ports:
Delay Value:
Card Type Map:

Add

allslc

: I

(Y e) (R

LA | LA [A][44 [l

Cancel

Help

Figure 19.5 Add / Edit CMR/I Node Dialog

19.6 Select CMRI Node Dialog

L

This dialog box selects an existing C/MRI node. It is possible to specify a pattern to narrow the list of results.

190nly meaningful for the older USIC boards.

Generated by Doxygen

19.7 Add Azatrax Node Dialog 177

Selection: |

‘ Select |

Figure 19.6 Select CMR/I Node Dialog

19.7 Add Azatrax Node Dialog

This dialog box adds an Axatrax device and gives it a name that can be used with the user code to access the device's
state information and to actuate its channels. The dialog box asks for a name and the device's type and serial number.

Generated by Doxygen

178 Dispatcher Reference

Hame:

aeral Humber:

Sl Cancel Help

Figure 19.7 Add / Edit Axatrax Node Dialog

19.8 Select Azatrax Node Dialog

This dialog box selects an existing Axatrax device. It is possible to specify a pattern to narrow the list of results.

Generated by Doxygen

19.9 Add Panel Object Dialog 179

Selection:

‘ Select |

Figure 19.8 Select Axatrax Node Dialog

19.9 Add Panel Object Dialog

This dialog box adds an object to either the schematic (track work) panel or control panel. Each object is of a spec-
ified type and has a unique name, is part of a control point, and has various attributes, such as a location (X and Y
coordinates), orientation, label, etc.

Generated by Doxygen

180

Dispatcher Reference

Hame:

Object Type

¥ SWPate
~ Lamp
~ HiddenBlock

-~ SIGHate
.~ CTClabel
- Stub¥ard

- ScissorCrossover - Crossover - SingleSlip

~r Signal

~ 3chlabel

~- CodeButton - Toggle ~- PushButton
~r StraightBlock - EndBumper - CurvedBlock
~ Through¥ard - - Crossing ~r Switch

~- DoubleSlip - ThreeWay3W

Control Foint:

&

3 Use Crosshairs

Label:

Honmal Script:

Reverse Script:

Redraw |

Figure 19.9 Add / Edit Panel Object Dialog

19.10 Select Panel Object Dialog

This dialog box selects an existing object on the schematic (track work) panel or control panel.lt is possible to specify a

pattern to narrow the list of results.

Generated by Doxygen

19.11 Edit User Code Dialog 181

Pattem:

BK1
BK3
Bkd
CDB1
cDB2
31

52
SGP1
sGP2
Side
SWH

Selection: |

‘ Select |

Figure 19.10 Select Panel Object Dialog

19.11 Edit User Code Dialog

This dialog box displays the user code and provides a simple text editor to edit the user code.

Generated by Doxygen

182 Dispatcher Reference

This is an example CTC Panel program. It features a section of single
tracked mainline with a passing siding.

#

The switches and signals are controled hy a SMINI node, which also connects
occupation detectors and switch point sensors to the host system

See examplel. iow for the I/0 connections for this example.

#
The signals are two headed, two light signals.
#

package require snit;# Make sure snit is loaded.

Define types

This code wses SNIT to create a set of 00 types to encapsulate each of
the several elements of the system: trackwork sections (blocks),

switches (turnouts), Switch Plates, Signal Plates, Signals, and control
points.

#

namespace eval Blocks |
Block type (general trackwork).
Encapsulates block occupation detectors
+#

Update | cancel |

Figure 19.11 Edit User Code Dialog

19.12 Find Node Dialog

This dialog box is used to find nodes by number in the node graph.

. u
Hode ID:|1 =

Find Cancel Help

Figure 19.12 Find Node Dialog

19.13 Print Dialog

This dialog box selects the output PDF file and paper size for the print operations. '

"Really it is a save to PDF file. To really print you need to open the PDF file with a PDF viewer and then select the Print function of the viewer to
then print the file.

Generated by Doxygen

19.14 Select Panel Dialog 183

Output file: |newctcpanel pdf ﬂl
Paper size: |lefter |

‘ Print Cancel |

|

Figure 19.13 Print Dialog

19.14 Select Panel Dialog

This dialog box selects the panel to add track work from the node graph to.

HarnEiCTC—E [+

‘ select Cancel Help

|

Figure 19.14 Select CTC Panel Dialog

Generated by Doxygen

184 Dispatcher Reference

19.15 Using the Dispatcher program with layouts designed in XtrackCAD

XtrackCAD includes a feature called "Layout Control Elements", where the layout designer can include information for
the layout control software (eg The Model Railroad System) in the layout file. The Dispatcher includes a parser for
XtrackCAD files and can extract this information and copy it into a CTC Panel, if it is formatted properly. The specific
elements that the Dispatcher program can access include blocks (for occupancy detection), switch motors (for turnout
control), and signals for signal aspect display.

19.15.1 LCC event id format.

A LCC event id is a 64-bit number, represented as eight pairs of hexadecimal digits (0-9, a-f/A-F) separated by periods
(.)- Each pair represents one 8-bit byte of the event id. This event id is either produced by a sensor or logic element or
is consumed by a control/device or a logic element.

19.15.2 XTrackCAD "script" formats.

For blocks the occupancy script contains a pair of LCC event ids, separated by a colon (:). The first LCC event id is
produced by the occupancy detector when the train enters the block and the second LCC event id is produced by the
occupancy detector when the train leaves the block.

For switch motors the point sense script contains a pair of LCC event ids, separated by a colon (:). The first LCC event
id is produced by the point sensor when the points are aligned in the "normal” position (typically aligned to the main) and
the second LCC event id is produced by the point sensor when the points are aligned in the "reverse” position (typically
aligned to the spur). The normal and reverse script each contain a single LCC event id. These events are produced by
the CTC Panel when the control point Code button is pressed (clicked) and are consumed by the switch motor.

For signals, the aspect name is a space separated list of the color(s) of the signal heads from top to bottom and the
aspect script is a LCC event id that is consumed to produce that aspect. Presumably, the LCC event id is produced by

a logic element (presumably a mast group in a Tower-LCC or similar device) or virtual track circuit in a Tower-LCC or
similar device.

19.15.3 Layout Controls Dialog

When an XTrackCAD has been loaded, the View menu item Layout Controls becomes enabled and can be used
to display all of the layout control elements loaded from the layout file. These controls can be viewed or extracted to
CSV files (suitable for importing into Excel or oocalc).

19.16 Insertable Module Library

19.16.1 Track Work type

These are types related to track work.

There are two types defined:

Generated by Doxygen

19.16 Insertable Module Library 185

19.16.1.1 Blocks::Block

This type defines two methods:
occupiedp {}
setoccupied {value}

The occupiedp method return a boolean value depending on the state of the block (occupied or not). The
setoccupied sets the state of the block (as written, a value of 1 means occupied and a value of 0 means not
occupied).

19.16.1.2 Switches::Switch

This type defines the same methods as Block, plus these four additional methods:
getstate {}

setstate {statebits}

motorbits {}

setmotor {mv}

The getstate and set state methods relate to the state of the points.

The motorbits and setmotor methods handle the switch motor.

19.16.2 Switch Plate type

This defines one type, SwitchPlates: :SwitchPlate.

Its constructor takes one additional argument, typically an instance of a Switches::Switch, to which it delegates methods
to. In addition, it adds two methods:

setlever {pos}
getlever {}

These two methods relate to the switch plate's lever position.

19.16.3 Signal types

There are three signal modules: two LEDs per signal head (red, green), three LEDs per signal head (red, yellow, green),
and single bi-color LED per head.
All of the signal types take one option —signal which is a signal type panel object and they define two methods:
t t {a}
getaspect ()

They vary only in the aspect codes and the aspect bits defined.

The types defined are:

» Two Aspect Color Light

— Signals::OneHead
— Signals::TwoHead

» Three Aspect Color Light

— Signals::OneHead
— Signals::TwoHead
— Signals::ThreeHead

» Three Aspect Search Light

— Signals::OneHead
— Signals::TwoHead
— Signals::ThreeHead

Generated by Doxygen

186 Dispatcher Reference

19.16.4 Signal Plate type

This defines one type, SignalPlates: :SignalPlate, which takes one option —signalplate, which is the
name of the CTC panel Signal Plate. It defines these methods:

setlever {pos}
getlever {}
setdot {dir}

The setlever and get lever methods store and fetch the lever state. The @ setdot method update the indicator
lamps on the signal plate.

19.16.5 Control Point type

This module defines one type, xc ControlPoints::ControlPoint, which takes one option, —cpname, which is the name
of as control point. It defines one method, code, which takes no arguments and would typically be bound to a code
button. This method invokes all of the switch plates and signal plates in the named control point.

19.16.6 Radio Group type

This module defines one type, Groups: : Group, which takes one option ~buttonmap, which is an even element
list containing button names and values, with the odd elements being the button names and the even elements the

values. It defines two methods:
getvalue {}
setvalue {newvalue}

The setvalue method would be bound to a button to set that buttons value. The getvalue method would be called
to fetch the set value.

Generated by Doxygen

Chapter 20

Dispatcher Examples

These are four examples created using the Dispatcher program. The code files are included and can be used as
references or even modified to suit some part of your layout.

20.1 Example 1: Simple siding on single track mainline

This example, shown below, implements a simple passing siding on a single track main line. There are two control
points, one at each end of the siding. Both control points are handled with a single SMINI board.

Fle Edit View Options Panel CiMH ﬂelp|

Siding 1

=i

|
Figure 20.1 Example 1: Simple siding on single track mainline

188 Dispatcher Examples

Here is the code:

Add User code after this line

This is an example CTIC Panel program. It features a section of single
tracked mainline with a passing siding.

#

The switches and signals are controled by a SMINI node, which also connects
occupation detectors and switch point sensors to the host system.

See examplel.iow for the I/O connections for this example.

#

The signals are two headed, two light signals.

#

package require snit;# Make sure snit is loaded.

Define types:

This code uses SNIT to create a set of OO0 types to encapsulate each of
the several elements of the system: trackwork sections (blocks)

switches (turnouts), Switch Plates, Signal Plates, Signals, and control
points.

#

namespace eval Blocks {
Block type (general trackwork).
Encapsulates block occupation detectors.
#
snit::type Block {
Occupation state values
typevariable OCC 1
typevariable CLR 0O
Occupation state bit
variable occupiedbit
constructor {} {
set occupiedbit $CLR; # Initialize to clear.
}
Occupation state methods
method occupiedp {} {return [expr {$occupiedbit == $OCC}]}
method setoccupied {value} {
set occupiedbit $value
}
}
Block BKI1;# Block 1
Block SD1;# Siding
Block BK3;# Block 3
Block BK4;# Block 4
}
namespace eval Switches {
Switch type (turnout)
Encapsulates a switch (turnout), including its OS (delegated to a Block
object), its switch motor, and its point position sensor (its state).
snit::type Switch {

component block;# 0S section
delegate method * to block;# Delegate block methods
variable state unknown;# Sense state (point position)

Motor bit values
typevariable NOR 1;# 01
typevariable REV 2;# 10

variable motor; # Motor bits —-- used to drive switch
motor.
constructor {} {
Install OS section

install block using Blocks::Block $AUTO%
Initialize motor bits
set motor $NOR

}

State methods

method getstate {} {return $state}

method setstate {statebits} {

if {$statebits == $NOR} {
set state normal
} elseif {S$statebits == SREV} {

set state reverse
} else {
set state unknown
}
}
Motor bit methods
method motorbits {} {return $motor}
method setmotor {mv} {
h —exact $mv {
normal {set motor S$NOR}
reverse {set motor S$SREV}

SwW

Generated by Doxygen

20.1 Example 1: Simple siding on single track mainline

189

Switch S1;# Switch 1
Switch S2;# Switch 2
}
namespace eval SwitchPlates {
Switch Plate
Encapsulates a switch plate, implementing its lever position.
snit::type SwitchPlate {
component switch
delegate method x to switch
variable leverpos unknown
constructor {sw} {
set Ssw

}
method setlever {pos} {set leverpos S$pos}
method getlever {} {return $leverpos}
}
SwitchPlate SWP1l Switches::Sl
SwitchPlate SWP2 Switches::S2
}
namespace eval Signals {
Signal types. Encapsulates a signal’s aspect.
snit::type OneHead ({
Single head signals have three states: dark, green or red.
typevariable aspects -array {

Dark 0x00
Green 0x01
Red 0x02

}
variable aspectbits
constructor {} {
set aspectbits $aspects (Dark)
}
method setaspect {a} {set aspectbits S$aspects($a)}
method getaspect {} {return S$Saspectbits}
}
snit::type TwoHead {
Two head signals have four states: dard, green over red, red over green,
and red over red.
typevariable aspects -array {
Dark 0x00
GreenRed 0x06
RedGreen 0x09
RedRed 0x0A
}
variable aspectbits
constructor {} {
set aspectbits $aspects (Dark)
}
method setaspect {a} {set aspectbits S$aspects($a)}

method getaspect {} {return $aspectbits}
}
TwoHead CP1E; # Heading into tch 1 from the west (block 1)
TwoHead CP1WM; # Heading into tch 1 from the east on the main
TwoHead CP1WS; # Heading into tch 1 from the east from the siding
TwoHead CP2EM; # Heading into tch 2 from the west on the main
TwoHead CP2ES; # Heading into tch 2 from the west from the siding
TwoHead CP2W; # Heading into tch 2 from the east (block 4)

}
namespace eval SignalPlates {
Signal Plate, encapsulating a signal plate with its lever and indicators.
snit::type SignalPlate {
variable leverpos unknown
option -signalplate -default {} -readonly yes
constructor {args} {
$self configurelist $args
}

method setlever {pos} {set leverpos $pos}

method getlever {} {return $leverpos}
method setdot {dir} {
switch $dir {
left |

MainWindow ctcpanel seti Soptions(-signalplate) L on
MainWindow ctcpanel seti $options(-signalplate) C off
MainWindow ctcpanel seti $options(-signalplate) R off
}
right {
MainWindow ctcpanel seti $options(-signalplate) L off
MainWindow ctcpanel seti $options(-signalplate) C off
MainWindow ctcpanel seti $options(-signalplate) R on

none -

Generated by Doxygen

190 Dispatcher Examples

default {
MainWindow ctcpanel seti $options(-signalplate) L off
MainWindow ctcpanel seti $options(-signalplate) C on
MainWindow ctcpanel seti $options(-signalplate) R off

}

}
}
SignalPlate SGP1l -signalplate SGP1l;# Signal plate for control point 1
SignalPlate SGP2 -signalplate SGP2;# Signal plate for control point 2
}
namespace eval ControlPoints {
Control points. Used to implement code buttons.
Encapsulates a control point
snit::type ControlPoint {
option -cpname -readonly yes -default {}
constructor {args} {
$self configurelist $args
}
method code {} {
foreach swp [MainWindow ctcpanel objectlist $options (-cpname) SwitchPlates] {
MainWindow ctcpanel invoke $swp
}
fo h sgp [MainWindow ctcpanel objectlist S$options(-cpname) SignalPlates] {
MainWindow ctcpanel invoke $sgp

}

}

}

ControlPoint CP1 -cpname CP1;# Control point 1

ControlPoint CP2 -cpname CP2;# Control point 2
}
Main Loop Start
while {true} {

Read all ports

set CP1_2_inbits [CP1_2 inputs]

Occupation Detectors: (Input Port A)

set tempByte [lindex $CP1_2_inbits 0]

Blocks::BK1l setoccupied [expr {S$tempByte & 0x011}]

[
Switches::S1 setoccupied [expr {StempByte » 1 & 0x01}]
Blocks::BK3 setoccupied [expr {$tempByte » 2 & 0x01}]
Blocks::SD1 setoccupied [expr {$tempByte » 3 & 0x01}]
Switches::S2 setoccupied [expr {S$tempByte » 4 & 0x01}]
Blocks::BK4 setoccupied [expr {$tempByte » 5 & 0x01}

Switch point state switches (Input Port B)
set tempByte [lindex $CP1_2_inbits 1]
Switches::S1 setstate [expr {$tempByte & 0x03}
Switches::S2 setstate [expr {StempByte » 2 & 0x03}]
Invoke all trackwork and get occupicency
MainWindow ctcpanel invoke Sidel
MainWindow ctcpanel invoke BK1
MainWindow ctcpanel invoke BK3
MainWindow ctcpanel invoke BK4
Initialize all signals to Red
Signals::CP1lE setaspect RedRed
Signals::CP1WM setaspect RedRed
Signals::CP1WS setaspect RedRed
Signals::CP2EM setaspect RedRed
Signals::CP2ES setaspect RedRed
Signals::CP2W setaspect RedRed
set dotl none;# Assume no direction of travel through control point 1
if {![MainWindow ctcpanel invoke S1]} {
Switchl 0OS is clear. We can start to move the points
Switches::S1 setmotor [SwitchPlates::SWP1 getlever]
get current point state
tch [Switches::S1 getstate] {
normal {;# Aligned for the Main. Set the mainline signals.
1f {![Blocks::BK1l occupiedp] &&
[string equal [SignalPlates::SGP1 getlever] "left"]} {
Clear to left
Signals::CP1WM setaspect GreenRed
set dotl left
}
if {![Blocks::BK3 occupiedp] &&
[string equal [SignalPlates::SGP1 getlever] "right"]} {
Clear to right
Signals::CP1lE setaspect GreenRed
set dotl right
}
Set plate indicators
MainWindow ctcpanel seti SWP1 N on
MainWindow ctcpanel seti SWP1 R off

Generated by Doxygen

20.1 Example 1: Simple siding on single track mainline

191

}
reverse {;# Aligned £

if {![Blocks::BK1l occupiedp]

[string equal [SignalPlates::SGP1l getlever]

Clear to left

r the siding.

&&

Signals::CP1WS setaspect RedGreen

set dotl left
}

1f {![Blocks::SD1 occupiedp]

[string equal [SignalPlates::SGP1l getlever]

Clear to right

&&

Signals::CP1lE setaspect RedGreen

set dotl right

}
Set plate indicators

MainWindow ctcpanel seti SWP1
MainWindow ctcpanel seti SWP1

Set plate indicators
MainWindow ctcpanel seti SWP1
MainWindow ctcpanel seti SWP1

Set DOT on switch plate
SignalPlates::SGP1 setdot $dotl
Switch 2 is much the same.
set dot2 none

1t {;# Points still moving.

1if {![MainWindow ctcpanel invoke S2]}

Switches::S2 setmotor [SwitchPlates::SWP2 getlever]
tch [Switches::S2 getstate]

normal {

{

if {![Blocks::BK4 occupiedp]

&&
[string equal [SignalPlates::SGP2 getlever]

on
off

off
off

{

Signals::CP2EM setaspect GreenRed

set dot2 right
}

if {![Blocks::BK3 occupiedp]

&&
[string equal [SignalPlates::SGP2 getlever]

Signals::CP2W setaspect GreenRed

set dot2 left
}

MainWindow ctcpanel seti SWP2 N on
MainWindow ctcpanel seti SWP2 R off

}

reverse {

1f {![Blocks::BK4 occupiedp]

&&
[string equal [SignalPlates::SGP2 getlever]

Signals::CP2ES setaspect RedGreen

set dot2 right
}

1f {![Blocks::SD1 occupiedp]

&&
[string equal [SignalPlates::SGP2 getlever]

Signals::CP2W setaspect RedGreen

set dot2 left
}

MainWindow ctcpanel seti SWP2 R
MainWindow ctcpanel seti SWP2 N

default {

MainWindow ctcpanel seti SWP2 R
MainWindow ctcpanel seti SWP2 N

}
}
SignalPlates::SGP2 setdot $dot2

Approach lighting -- darken signals

if {![Blocks::BKl occupiedp]l} {
Signals::CP1lE setaspect Dark

{![Blocks::BK3 occupiedp]} {

Signals::CP1WM setaspect Dark
Signals::CP2EM setaspect Dark

{![Blocks::SD1 occupiedp]} {

Signals::CP1WS setaspect Dark
Signals::CP2ES setaspect Dark

}
1f {![Blocks::BK4 occupiedp]} {
Signals::CP2W setaspect Dark

on
off

of f
off

Set siding signals

"left"]}

"right"]}

"right"]}

"left"]}

"right"]}

"left"]}

facing empty blocks.

{

{

{

{

{

Generated by Doxygen

192

Dispatcher Examples

}
Pack output bits
Output Port A Card O0(CP1lE and CP1WM)
set CP1_2_outbits [expr {[Signals::CPlE getaspect] | \
[Signals::CP1WM getaspect] « 4}]
Output Port B Card 0 (CPIWS and S1)
lappend CP1_2_outbits [expr {[Signals::CP1WS getaspect] | \
[Switches::S1 motorbits] « 4}]
Output Port C Card 0 (CP2EM and CP2ES)
lappend CP1_2_ outbits [expr {[Signals::CP2EM getaspect] | \
[Signals::CP2ES getaspect] « 4}]
Output Port A Card 2 (CP2W and S2)
lappend CP1_2_outbits [expr {[Signals::CP2W getaspect] | \
[Switches::S2 motorbits] « 4}]
lappend CP1_2_outbits 0 0;# Output Ports B and C Card 2are not used.
puts stderr "xxx CP1_2_ outbits = $CP1_2_outbits"
Write all output ports
eval [list CP1l_2 outputs] $CP1_2_outbits
update; # Update display
}
Main Loop End

And the I/O Worksheet:
SMINI @ UA O:
Card No. 0 Output

|PORT |BIT|PIN|DESCRIPTION OF FUNCTION PERFORMED |

I | 0 | 1 |Lower Green \

| | 1 | 2 |Lower Red | CP1E Signal

| | 2 | 3 |Upper Green |

| A | 3 | 4 |Upper Red /

| | 4 | 5 |Lower Green \

| | 5| 6 |Lower Red | CP1WM Signal

| | 6 | 7 |Upper Green |

| | 7 | 8 |Upper Red /

| | 0 | 9 |Lower Green \

| | 1 |10 |Lower Red | CPIWS Signal

| | 2 |11 |Upper Green |

| B | 3 |12 |Upper Red /

| | 4 |13 |Normal \ Switch 1

| | 5 |14 |Reverse/ Motor

| | 6 115 | I
| |7 116 | |
| | 0 |17 |Lower Green \

| | 1 |18 |Lower Red | CP1E Signal

| | 2 |19 |Upper Green |

| C | 3 120 |Upper Red /

| | 4 |21 |Lower Green \

| | 5 122 |Lower Red | CP1WM Signal

| | 6 |23 |Upper Green |

| | 7 |24 |Upper Red /

| | 0 125 | |
| |1 126 | |
| [2127 | I
' D | 3128 | I
| [4 129 | I
| [5 130 | I
| | 6 131 | |
| |7 132 | I

Card No. 1 Input

|PORT |BIT|PIN|DESCRIPTION OF FUNCTION PERFORMED |

Block 1 Occupation Detector
Switch 1 Occupation Detector
Block 3 Occupation Detector
Siding Occupation Detector

Switch 2 Occupation Detector
Block 4 Occupation Detector

| | 0| 9 | Switch 1 state (normal)
| | 1 110 | Switch 1 state (reverse)
| | 2 |11 | Switch 2 state (normal) |

Generated by Doxygen

20.2 Example 2: Mainline with an industrial siding 193

Switch 2 state (reverse)

1 |Lower Green \

2 |Lower Red | CP2W Signal
3 |Upper Green |

4 |Upper Red /

5 |Normal \ Switch 2

6 |Reverse/ Motor

20.2 Example 2: Mainline with an industrial siding

This example, shown below, implements an industrial siding on a single track main line. There are two control points,
one at each end of the siding. This example uses three SMINI boards, one for each control point and one for the siding.

Generated by Doxygen

1

94

Dispatcher Examples

Fle Edit View Options Panel CfMri

oo

Figure 20.2 Example 2: Mainline with an industrial siding

Here is the code:

Do S S S S =0 S S S S S S S S 3 S 3 3 S

Add User code er this line

This is an example CTC Panel program. It features a section of single

tracked mainline with an industrial siding.

The switches and signals are controled by a pair of SMINI nodes,
connec occupation det t
The sw to the ind
with 1t ition sensors.
industrial

no occupation detectors on the
ings and their switches are not signaled.
See example2.iow for the I/O connections for this example.

The signals are two headed, three light signals.
ackage require snit;# Make sure snit is loaded.
Define types:

de uses SNIT to create a set of 00 types t >ncapsulate each of
the several elements of the system: trackwork sec
switches (turnouts), Switch Plates, Signal Plates,
points.

amespace eval Blocks {

Block type (general trackwork).

Encapsulates block occupation detectors.

#

snit::type Block {
Occupation state values
typevariable OCC 1
typevariable CLR 0O
Occupation state bit
variable occupiedbit
constructor {} {

set occupiedbit $CLR; # Initialize to clear.
}
Occupation state methods
method occupiedp {} { rn [expr {$occupiedbit == $0CC}]}

method setoccupied {value} {

ch also
h point sensors to the host system.
are manually operated (ground thrc

control

Generated by Doxygen

20.2 Example 2: Mainline with an industrial siding

195

set occupiedbit $value
}
}
Main line trackage
Block BKI1;# Block 1
Block BK3;# Block 3
Block BKS5; # Block 5
Industrial siding sections
Block ISidel
Block ISide2
Block ISide3
Block ISide4
}
namespace eval Switches {
Switch type (turnout)

Encapsulates a switch (turnout), including its OS (delegated to a Block
object), its switch motor, and its point position sensor (its state).

snit::type Switch {

component block;# 0S section
delegate method * to block;# Delegate block methods
variable state unknown;# Sense state (point position)

Motor bit values
typevariable NOR 1;# 01
typevariable REV 2;# 10

variable motor; # Motor bits -- used to drive
motor.
constructor {} {
Install OS section

install block using Blocks::Block $AUTO%
Initialize motor bits
set motor $NOR

}

State methods

method getstate {} {return $state}

method setstate {statebits} {

if {$statebits == $NOR} {
set state normal
} elseif {$statebits == SREV} {

set state reverse
} else {
set state unknown
}
}
Motor bit methods
method motorbits {} {return $motor}
method setmotor {mv} {
switch —exact $mv {
normal {set motor $NOR}
reverse {set motor S$SREV}

}
}

Switch SW1;# Switch at CP1

Switch SW2; # Switch at CP2

Switch INDUSI1; # Switch at Sawmill
Switch INDUS2; # Switch at Box Factory
Switch INDUS3; # Switch at Mill

}
namespace eval SwitchPlates {
Switch Plate

Encapsulates a switch plate, implementing its lever position.

snit::type SwitchPlate ({
component switch
delegate method * to switch
variable leverpos unknown
constructor {sw} {
set switch $sw
}
method setlever {pos} {set leverpos $pos}
method getlever {} {return $leverpos}
}
SwitchPlate CP1SW Switches::SW1
SwitchPlate CP2SW Switches::SW2
}
namespace eval Signals {
Signal types. Encapsulates a signal’s aspect.
snit::type OneHead ({
Single head signals have four states: dark, green, yellow,
typevariable aspects -array {
Dark 0x00
Green 0x01

or red.

Generated by Doxygen

196

Dispatcher Examples

Yellow 0x02
Red 0x04
}
variable aspectbits
constructor {} {
set aspectbits $aspects (Dark)
}
method setaspect {a} {set aspectbits $aspects($a)}
method getaspect {} {return $aspectbits}
}
snit::type TwoHead ({
Two head signals have five states: dark, green over red,
yellow over red, red over yellow, and red over red.
typevariable aspects —-array {
Dark 0x00
GreenRed 0x11
YellowRed 0x12
RedYellow 0x0Oc
RedRed 0x14
}
variable aspectbits
constructor {} {
set aspectbits $aspects (Dark)
}
method setaspect {a} {set aspectbits S$aspects($a)}

method getaspect {} {return $aspectbits}
}
TwoHead CP1E; # Heading into 1 from the west (block 1)
TwoHead CP1WM; # Heading into 1 from the east on the main (Block 3)
TwoHead CP1WS; # Heading into 1 from the east from the siding
TwoHead CP2EM; # Heading into ch 2 from the west on the main (Block 3)
TwoHead CP2ES; # Heading into 2 from the west from the siding
TwoHead CP2W; # Heading into 2 from the east (block 5)

}
namespace eval SignalPlates {
Signal Plate, encapsulating a signal plate with its lever and indicators.
snit::type SignalPlate {
variable leverpos unknown
option -signalplate -default {} -readonly yes
constructor {args} {
$self configurelist $args
}
method setlever {pos} {set leverpos $pos}
method getlever {} {return $leverpos}
method setdot {dir} {
S tch $dir {
left |
MainWindow ctcpanel seti Soptions(-signalplate) L on
MainWindow ctcpanel seti $options(-signalplate) C off
MainWindow ctcpanel seti $options(-signalplate) R off
}
right {
MainWindow ctcpanel seti $options(-signalplate) L off
MainWindow ctcpanel seti $options(-signalplate) C off
MainWindow ctcpanel seti $options(-signalplate) R on
}
none -
efault {
MainWindow ctcpanel seti $options(-signalplate) L off
MainWindow ctcpanel seti $options(-signalplate) C on
MainWindow ctcpanel seti $options(-signalplate) R off

de

}
}
SignalPlate CP1SG -signalplate CP1SG;#Signal plate for control point 1
SignalPlate CP2SG -signalplate CP2SG;#Signal plate for control point 2
}
namespace eval ControlPoints {
Control points. Used to implement code buttons.
Encapsulates a control point
snit::type ControlPoint {
option -cpname -readonly yes -de
constructor {args} {
$self configurelist $args

it {1}

}
method code {} {

foreach swp [MainWindow ctcpanel objectlist $options(-cpname) SwitchPlates]

MainWindow ctcpanel invoke $swp

fo h sgp [MainWindow ctcpanel objectlist S$options(-cpname) SignalPlates]

Generated by Doxygen

20.2 Example 2: Mainline with an industrial siding

197

MainWindow ctcpanel invoke $sgp

}
}
}

ControlPoint CP1 -cpname CP1;#
ControlPoint CP2 -cpname CP2;#

}
Main Loop Start
while {true} {

Read all ports

set CP1l_inbits [CP1l inputs]
Occupation Detectors and point state switches:
set tempByte [lindex $CP1_inbits 0]
Blocks::BKl setoccupied
Switches::SW1 setoccupied
Switches::SW1l setstate

set CP2_inbits [CP2 inputs]
Occupation Detectors and point state switches:
set tempByte [lindex $CP2_inbits 0]
Blocks::BK5 setoccupied
Switches::SW2 setoccupied [expr {StempByte » 1 & 0x01}]

Switches::SW2 setstate
set Siding_inbits [Siding inputs]

Occupation Detectors:
set tempByte [lindex $Siding_inbits
setoccupied
Blocks::ISidel setoccupied
Blocks::ISide2 setoccupied
Blocks::ISide3 setoccupied
Blocks::ISided4 setoccupied
Switches::INDUS1 setoccupied
Switches::INDUS2 setoccupied
Switches: :INDUS3 setoccupied
Point state switches:
set tempByte [lindex $Siding_inbits

Blocks: :BK3

Switches::INDUS1 setstate
Switches::INDUS2 setstate
Switches::INDUS3 setstate

Invoke all trackwork and

MainWindow ctcpanel
MainWindow ctcpanel
MainWindow ctcpanel
MainWindow ctcpanel
MainWindow ctcpanel
MainWindow ctcpanel
MainWindow ctcpanel
MainWindow ctcpanel
MainWindow ctcpanel
MainWindow ctcpanel

invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke

Combine all siding ODs
set Siding [expr {[Blocks:

Control po
Control po

[expr {StempByte
[expr {S$tempByte » 1 & 0x01}]
[expr {$tempByte » 2 & 0x03}]

[expr {S$tempByte

int 1
int 2

(Input Port A, Card 1)

& 0x01}]

(Input Port A,

& 0x01}]

[expr {$tempByte » 2 & 0x03}]

[expr
[expr
[expr

Initialize all signals to Red
Signals::CP1lE setaspect RedRed
Signals::CP1WM setaspect RedRed
Signals::CP1WS setaspect RedRed
Signals::CP2EM setaspect RedRed
Signals::CP2ES setaspect RedRed
Signals::CP2W setaspect RedRed

set dotl none;# Assume no direction of travel through control point 1

(Input Port

I
I
|
|
Switches::INDUS1 occupiedp]
Switches: :INDUS2 occupiedp]
[Switches::INDUS3 occupiedp]

A, Card 1)

0]
{$tempByte
{StempByte »
{$tempByte »

[expr {StempByte »
[expr {StempByte »
[expr {$tempByte »
[expr {$tempByte »
[expr {StempByte »
(Input Port B, Card 1)
1]

[expr {$tempByte
[expr {StempByte »
[expr {StempByte »

get occupicency

BK1

Bk3

BKS5

Isidel

ISide2

ISide3

ISide4d

INDUS1

INDUS2

INDUS3

:ISidel occupiedp] |

:ISide2 occupiedp] |

:ISide3 occupiedp] |

:ISided4 occupiedp] |

1f {![MainWindow ctcpanel invoke SW1]} {
Switchl 0S is clear.

Switches::SW1 setmotor

& 0x01}]
0x011}]
0x01}]
0x01}]
0x01}]
0x01}]
0x01}]
0x01}]

oUW N
DR

& 0x03}]
2 & 0x03}]
4 & 0x03}]

We can start to move the points

get current point state
switch [Switches::SW1l getstate]

normal {;# Aligned for the Main.
1f {![Blocks::BK1l occupiedp]
[string equal

Clear to left
Signals::CP1WM setaspect GreenRed
set dotl left

}

if {![Blocks::BK3 occupiedp]
[string equal

Clear to right
Signals::CP1lE setaspect GreenRed

{

&&

&&

[SwitchPlates::CP1SW getlever]

Set the mainline signals.

[SignalPlates::CP1SG getlever] "left"]}

[SignalPlates::CP1SG getlever] "right"]}

Card 1)

{

{

Generated by Doxygen

198

Dispatcher Examples

set dotl right
}
Set plate indicators
MainWindow ctcpanel seti CP1SW N on
MainWindow ctcpanel seti CP1SW R off
}
reverse {;# Aligned for the siding. Set siding signals
if {![Blocks::BK1l occupiedp] &&
[string equal [SignalPlates::CP1SG getlever] "left"]}
Clear to left
Signals::CP1WS setaspect RedYellow
set dotl left
}

if {!$Siding && [string equal [SignalPlates::CP1SG getlever]

Clear to right
Signals::CPlE setaspect RedYellow
set dotl right
}
Set plate indicators
MainWindow ctcpanel seti CP1SW N off
MainWindow ctcpanel seti CP1SW R on

1t {;# Points still moving.

Set plate indicators

MainWindow ctcpanel seti CP1SW N off
MainWindow ctcpanel seti CP1SW R off

}
}
Set DOT on signal plate
SignalPlates::CP1SG setdot $dotl
Switch 2 is much the same.

{

"right"]}

set dot2 none;# Assume no direction of travel through control point 1

{![MainWindow ctcpanel invoke SW2]} {
Switchl OS is clear. We can start to move the points
Switches::SW2 setmotor [SwitchPlates::CP2SW getlever]
get current point state
tch [Switches::SW2 getstate] {
normal {;# Aligned for the Main. Set the mainline signals.
if {![Blocks::BK5 occupiedp] &&

[string equal [SignalPlates::CP2SG getlever] "right"]}

Clear to right
Signals::CP2EM setaspect GreenRed
set dot2 right
}
if {![Blocks::BK3 occupiedp] &&
[string equal [SignalPlates::CP2SG getlever] "left"]}
Clear to left
Signals::CP2W setaspect GreenRed
set dot2 left
}
Set plate indicators
MainWindow ctcpanel seti CP2SW N on
MainWindow ctcpanel seti CP2SW R off
}
reverse {;# Aligned for the siding. Set siding signals
1f {![Blocks::BK5 occupiedp] &&

[string equal [SignalPlates::CP2SG getlever] "right"]}

Clear to right
Signals::CP2ES setaspect RedYellow
set dot2 right

}

1f {!$Siding && [string equal [SignalPlates::CP2SG getlever]

Clear to left
Signals::CP2W setaspect RedYellow
set dot2 left
}
Set plate indicators
MainWindow ctcpanel seti CP2SW N off
MainWindow ctcpanel seti CP2SW R on

1t {;# Points still moving.

Set plate indicators

MainWindow ctcpanel seti CP2SW N off
MainWindow ctcpanel seti CP2SW R off

}
}
Set DOT on signal plate
SignalPlates::CP2SG setdot $dot2
Approach lighting -- darken signals facing empty blocks.

"left"]}

{

{

Generated by Doxygen

20.2 Example 2: Mainline with an industrial siding

199

Signals::CP1lE setaspect Dark

}

}

{![Blocks::BKl occupiedp]}

{![Blocks::BK3 occupiedp]}
Signals::CP1WM setaspect Dark
Signals::CP2EM setaspect Dark

{!$Siding}

{

{

{

Signals::CP1WS setaspect Dark
Signals::CP2ES setaspect Dark

}

Signals::CP2W setaspect Dark

o

Output Port B, Card 0

{![Blocks::BK5 occupiedp]}

Pack output bits
CP1:
Output Port A, Card O
set CP1l_outbits

lappend CP1l_outbits
Output Port C, Ca
lappend CP1l_outbits

Output Ports A,

B,

rd 0

lappend CP1l_outbits 0 0 O
CP2:

Output Port A, Card 0
set CP2_outbits

Output Port B, Ca
lappend CP2_outbits

Output Port C, Card 0

lappend CP2_outbits
Output Ports A, B, C of Card 2: nothing
lappend CP2_outbits 0 0 O
Write all output ports

eval
eval
#eval

[list CP1 outputs]
[list CP2 outputs]
[list Siding outputs]

rd 0

update; # Update display

}

Main Loop End

And the /O Worksheet:
SMINI @ UA O
Card No.

|PORT |BIT|PIN|DESCRIPTION OF FUNCTION PERFORMED

(CP1)

0 Output

{

(CP1E and SWl)
[expr {[Signals::CP1lE
[Switches::SW1
(CP1WM)
[Signals::CP1WM getaspect]
(CP1WS)
[Signals::CP1WS getaspect]
C of Card 2: nothing

(CP2W and SW2)
[expr {[Signals::CP2W
[Switches::SW2
(CP2EM)
[Signals::CP2EM getaspect]
(CP2ES)
[Signals::CP2ES getaspect]

SCP1_outbits
SCP2_outbits
$Siding_outbits; # No Siding outputs ports used

getaspect]
motorbits]

getaspect]
motorbits]

128

Upper
Upper
Upper
Lower
Lower
Normal
Revers

Green
Yellow
Red
Yellow
Red

\
e /

Yellow
Red

/

CP1E Signal

Switch 1
motor

Generated by Doxygen

200 Dispatcher Examples

|30
131
132

~J o U

Card No. 1 Input

I
Switch 1 OS Occupation Detector |
Normal \ Switch 1 |
Reverse / state contacts
I
|
I
I

Card No. 2 Output

| [o1 11 I
| 11 2] I
| 21 31 I
A | 31 4| I
| I 4151 I
| | 51 61 I
| 6 1 71 I
| 7181 I
| 01 91 I
| [1 110 | I
| 2 111 | I
B 1 3 112 | I
| [4 113 | I
| [5114 | I
| | 6 115 | I
| |7 116 | I
| [0 117 1 I
| [1118 | I
| 2119 | I
I Cc | 3120 | I
| |4 121 | I
| |5 122 | I
| | 6 123 | I
| |7 124] I
| I 0 125 | I
| I 1126 | I
| 2127 | I
I'D | 3 128 | I
| |4 129 | I

Generated by Doxygen

20.2 Example 2: Mainline with an industrial siding

SMINI @ UA 1
Card No.

|PORT |BIT |PIN|DESCR

130 |

131 |

132 |
(Siding)

0 Output

IPTION OF FUNCTION PERFORMED

oUW e O

W Jo U WN

Card No.

1 Input

| | 0 | 1 | Block 3 Occupation Detector

	1	2	Siding, section 1 Occupation Detector
	2	3	Siding, section 2 Occupation Detector
2	3	4	Siding, section 3 Occupation Detector
	4	5	Siding, section 4 Occupation Detector
	51 6	Industry 1 Occupation Detector	
	6	7	Industry 2 Occupation Detector
	7	1 8	Industry 3 Occupation Detector

| | 0| 9 | Normal \ Manual switch |
| | 1 |10 | Reverse / Industry 1 state

| | 2 |11 | Normal \ Manual switch |
| B | 3 |12 | Reverse / Industry 2 state

| | 4 |13 | Normal \ Manual switch

| | 5 114 | Reverse / Industry 3 state

| | 6 115 | |
| |7 116 | I
| [0 117 | |
| [1 118 | I
| [2 119 | I
¢ [3120 | |
| | 4 121 | I
	5 122	
	6 123	
	7 124	
	0 125	I
	1 126	
	2 127	I
I'D	3128	I
	4 129	I

Generated by Doxygen

202

Dispatcher Examples

| | 5 130
| | 6 [31
| | 7 132

Card No. 2 Output

o U WN R o
N
s}

132

SMINI @ UA 2

(CP2)
Card No. 0 Output

|PORT |BIT|PIN|DESCRIPTION OF

FUNCTION PERFORMED

| | 0 | 1 | Upper Green \

| | 1 | 2 | Upper Yellow | CP2W Signal
| | 2 | 3 | Upper Red |

| A | 3| 4 | Lower Yellow |

| | 4 | 5 | Lower Red /

| | 51 6 | Normal \ Switch 2

| | 6 | 7 | Reverse / motor

| 71 8|

| | 0 | 9 | Upper Green \

| | 1 |10 | Upper Yellow | CP2EM Signal
| | 2 |11 | Upper Red |

| B | 3 |12 | Lower Yellow |

| | 4 |13 | Lower Red /

| | 5 114 |

| | 6 115 |

| |7 116 |

| | 0 |17 | Upper Green \

| | 1 |18 | Upper Yellow | CP2ES Signal
| | 2 119 | Upper Red |

| C | 3 120 | Lower Yellow |

| | 4 |21 | Lower Red /

| | 5 122 |

| | 6 123 |

| |7 124 |

| | 0 125 |

| | 1 126 |

| [2127 |

I'D | 3128 |

| | 4 129 |

Generated by Doxygen

20.2 Example 2: Mainline with an industrial siding

203

| |5 130 | I
| | 6 1311 I
| 7132] I

Card No. 1 Input

Block 5 Occupation Detector
Switch 2 OS Occupation Detector |
Normal \ Switch 2 |
Reverse / state contacts
|
I
|
I

d o U WwWN R o
N
s}

Card No. 2 Output

o U WN RO

W J oUW N

|9
|10
|11
|12
|13
|14

oUW e O

Generated by Doxygen

204 Dispatcher Examples

20.3 Example 3: double track crossover

This example, shown below, implements a double track crossover. Uses two SMINI boards, one for each of the two
control points.

Hle Edit View Options Panel CfMn ﬂelp|

=

Figure 20.3 Example 3: Double track crossover

Here is the code:

Add User code er this line

Th is an example CTC Panel progr a section of double

tracked mainline with a pair of cr

#

The switches and signals are controled by a pair of SMINI nodes, which also
connects occupation detectors 1l switch point sensors to the host system.
See example3.iow for I/O connections for this example.

#

The signals are two headed, three light signals.

#

package require snit;# Make sure snit is loaded.

Define types:

n

#

This code uses SNIT to create a set of OO0 types to encapsulate each of
the several elements of the system: trackwork secti S
switches (turnouts), Switch Plates, Signal Plates,
points.

=

Do H 3

amespace eval Blocks {

Generated by Doxygen

20.3 Example 3: double track crossover

205

Block type (general trackwork).
Encapsulates block occupation detectors.

#

snit::type Block {
Occupation state values
typevariable OCC 1
typevariable CLR 0O
Occupation state bit
variable occupiedbit

constructor

{d

set occupiedbit $CLR; #

}

Occupation state methods

method occupiedp {} {return

method setoccupied {value}
set occupiedbit $value

}
}

Main line trackage

Block BKITL1;#

Block BK1T2;#

Block BK3T1;#

Block BK3T2; #

Block BK5STI1; #

Block BK5T2; #
}

Block
Block
Block
Block
Block
Block

, East
, West
, East
, West
, East
, West

namespace eval Switches {
(turnout)

Switch type

Encapsulates a switch

object), its switch motor,
snit::type Switch {
component block; #
delegate method % to block;#
variable state unknown;#
Motor bit values
typevariable NOR 1;# 01
typevariable REV 2;# 10
variable motor;#

constructor
#

A

Initialize to clear.

[expr {$Soccupiedbit == $OCC}]}

{

(turnout), including its OS (delegated to a Block

and its point position sensor (its state).

0S section
Delegate block methods
Sense state (point position)

Motor bits -- used to drive
motor.

Install OS section

install block using Blocks::Block $AUTO%
Initialize motor bits

set motor

}

SNOR

State methods
method getstate {}
method setstate {statebits}
1f {$statebits
set state normal
} elseif {S$statebits == S$REV} {
set state reverse

} else {

{return

SNOR}

set state unknown

}
}

Motor bit methods

method motorbits {} {return
method setmotor {mv} {
switch -exact $mv

1

{

{

normal {set motor S$NOR}
reverse {set motor S$REV}

}
}
Switch SWla;#
Switch SWlb; #
Switch SW2a;#
Switch SW2b; #
}

Switch
Switch
Switch
Switch

namespace eval SwitchPlates {
Switch Plate
Encapsulates a switch plate,
snit::type SwitchPlate {
delegate method * to switch
variable leverpos unknown

constructor

set switch

}

method setlever {pos}

{sw}
Ssw

{

method getlever {}

Sstate}

{

Smotor}

at
at
at
at

CP1
CP1
CP2
Cp2

implementing its lever position.

{set leverpos S$pos}

{return $leverpos}

Generated by Doxygen

206

Dispatcher Examples

}

SwitchPl

SwitchPl
}

ate CP1SW
ate CP2SW

namespace eval Signals {
types. Encapsulates a signal’s aspect.
snit::type OneHead ({
Single head signals have four states: dark,
typevariable aspects -array {

Signal

Dark

Gree

Yell

Red
}

0x00
n 0x01
ow 0x02
0x04

variable aspectbits

constr
set
}
method
method
}
snit::ty

uctor {} {
aspectbits

setaspect
getaspect

pe TwoHead

Saspects (Dark)

{a} {set aspectbits $aspects($a)}
{} {return $Sas

{

Two head signals have five states: dark, green over red,

yellow over red,

red over yellow,

typevariable aspects -array {

Dark

Gree

Yell

RedY

RedR
}

0x00
nRed 0x11
owRed 0x12
ellow 0x0c
ed 0x14

variable aspectbits

constr

uctor {} {

set aspectbits $aspects (Dark)

}

method setaspect {a}
method getaspect {}

}

TwoHead
TwoHead
TwoHead
TwoHead
TwoHead
TwoHead
TwoHead
TwoHead

}

CP1ETL; #
CPIWT1; #
CP1ET2; #
CP1WT2; #
CP2ET1; #
CP2WT1; #
CP2ET2; #
CP2WT2; #

Heading into
Heading into

Heading into
Heading into
Heading into
Heading into
Heading into
Heading into

namespace eval SignalPlates {
Plate, encapsulating a signal plate with its lever and indicators.
snit::type SignalPlate {
variable leverpos unknown
option -signalplate -default {}
constructor {args} {
$self configurelist $args

Signal

}

method setlever {pos}
method getlever {}

method setdot {dir} {

SwW1itC
le

}

ri

}

SignalPlate CP1T1SG -signalplate
SignalPlate CP1T2SG -signalplate
SignalPlate CP2T1SG -signalplate

ch $dir {
ft {
MainWindow
MainWindow
MainWindow

ght {

MainWindow
MainWindow
MainWindow

é {
MainWindow
MainWindow
MainWindow

ctcpanel
ctcpanel
ctcpanel

ctcpanel
ctcpanel
ctcpanel

ctcpanel
ctcpanel
ctcpanel

seti Soptions(-signalplate)
seti Soptions(-signalplate)
seti Soptions(-signalplate)

seti $Soptions(-signalplate)
setil Soptions(-signalplate)
seti Soptions(-signalplate)

seti Soptions(-signalplate)
seti Soptions(-signalplate)
seti $options(-signalplate)

{return $aspectbits}

—readonly yes

{set leverpos S$pos}
{return $leverpos}

TRACKZ2; #Signal plate
CP1T1SG; #Signal plate f

on
off
off

off
off
on

off
on
off

CP1T1SG; #Signal plate for CP1,

green, yellow, or red.
pectbits}
and red over red.
{set aspectbits $aspects($a)}
1 from the west (block 1, Track
1 from the east (Block 3, Track
1 from the east (block 1, Track
1 from the west (Block 3, Track
1 from the west (block 3, Track
1 from the east (Block 5, Track
1 from the east (block 3, Track
1 from the west (Block 5, Track

track 1
- CP1, track 2
CP2, track 1

NN P NN e

Generated by Doxygen

20.3 Example 3: double track crossover

207

}

SignalPlate CP2T2SG -signalplate TRACK2;#Signal plate for CP2,

namespace eval ControlPoints {
s. Used to implement code buttons.
Encapsulates a control point

Control point

snit::type Cont

option -cpname -readonly yes -

constructor {

rolPoint {

args} f{

{}

$self configurelist $args

}
method code {
foreach swp

}
foreach sgp

}
}

ControlPoint CP1 -cpname CP1;#
ControlPoint CP2 -cpname CP2;#

Main Loop Start
le {true} {

bAoA

track 2

[MainWindow ctcpanel objectlist S$options (-cpname) SwitchPlates]
MainWindow ctcpanel invoke $swp

[MainWindow ctcpanel objectlist S$options (-cpname) SignalPlates]
MainWindow ctcpanel invoke $sgp

Read all ports

set CPl_inbits [CP1l inputs]

Occupation Detectors and point
set tempByte [lindex $CP1_inbits

state switches:
0]

Control point 1
Control point 2

(Input Port A)

Blocks::BK1T1 setoccupied
Blocks::BK1T2 setoccupied
Blocks::BK3T1 setoccupied

[expr {StempByte & 0x01}]
[expr {$tempByte » 1 & 0x01}]
[expr {$tempByte » 2 & 0x01}]

The both switches are on a common OD for their OSs

Switches::SWla setoccupied [expr {S$tempByte » 3 & 0x01}]
Switches::SWlb setoccupied [expr {S$tempByte » 3 & 0x01}]
Switches::SWla setstate [expr {StempByte » 4 & 0x03}]
Switches::SWlb setstate [expr {$tempByte » 6 & 0x03}]

set CP2_inbits [CP2 inputs]

Occupation Detectors and point state switches: (Input Port A)
set tempByte [lindex $CP2_inbits 0]

Blocks::BK5T1 setoccupied [expr {$tempByte & 0x01}]

Blocks::BK5T2 setoccupied
Blocks::BK3T2 setoccupied

The both swit
Switches::SW2a
Switches::SW2b
Switches::SW2a
Switches::SW2b
Invoke all tr

ches are on
setoccupied
setoccupied
setstate
setstate
ackwork and

[expr {$tempByte » 1 & 0x01}]
[expr {$tempByte » 2 & 0x01}]
a common OD for their OSs

[expr {$tempByte » 3 & 0x01}]
[expr {$tempByte » 3 & 0x01}]
[expr {$tempByte » 4 & 0x03}]
[expr {$tempByte » 6 & 0x03}]

get occupicency

MainWindow ctcpanel invoke BKI1T1
MainWindow ctcpanel invoke BKI1T2
MainWindow ctcpanel invoke BK3T1
MainWindow ctcpanel invoke BK3T2
MainWindow ctcpanel invoke BK5T1
MainWindow ctcpanel invoke BK5T2
MainWindow ctcpanel invoke SWla
MainWindow ctcpanel invoke SWlb
MainWindow ctcpanel invoke SW2a
MainWindow ctcpanel invoke SW2b
Initialize all signals to Red

Signals::CP1lET1 setaspect RedRed
Signals::CP1WT1l setaspect RedRed
Signals::CP1ET2 setaspect RedRed
Signals::CP1WT2 setaspect RedRed
Signals::CP2ET1 setaspect RedRed
Signals::CP2WT1 setaspect RedRed
Signals::CP2ET2 setaspect RedRed
Signals::CP2WT2 setaspect RedRed

set dotltl none ;# Assume no direction of travel through control point 1,
set dotlt2 none ;# Assume no direction of travel through control point 1,

if {![MainWindow ctcpanel invoke
! [MainWindow ctcpanel invoke
Switchl (a & b) 0S is clear.

switch S$sla {

normal {;# Aligned for the Main.

SWlal &&
SWilb]} {

We can start to move the points
Switches::SWla setmotor [SwitchPlates::CP1SW getlever]
Switches::SWlb setmotor [SwitchPlates::CP1SW getlever]
set sla [Switches::SWla getstate]
set slb [Switches::SWlb getstate]
if {[string equal "S$sla" "S$slb"]} {

if {![Blocks::BK1T1l occupiedp] &&

[string equal [SignalPlates::CP1T1SG getlever]

Set the mainline signals.

"left"]} |

{

{

track 1
track 2

Generated by Doxygen

208

Dispatcher Examples

Clear to left on track 1

Signals::CP1WT1 setaspect GreenRed

set dotltl left

}
1f {![Blocks::BKI1T2 occupiedp]

[string equal [SignalPlates::CP1T2SG getlever]

Clear to left on track 2

&&

Signals::CP1WT2 setaspect GreenRed

set dotlt2 left

}
if {![Blocks::BK3T1l occupiedp]

[string equal [SignalPlates::CP1T1SG getlever]

Clear to right on track 1

&&

Signals::CP1ET1 setaspect GreenRed

set dotltl right

}
if {![Blocks::BK3T2 occupiedp]

[string equal [SignalPlates::CP1T2SG getlever]

Clear to right on track 2

&&

Signals::CP1ET2 setaspect GreenRed

set dotlt2 right
}

Set plate indicators

MainWindow ctcpanel seti CP1SW N on
MainWindow ctcpanel seti CP1SW R off

}

reverse {;# Aligned for crossing over

1f {[string equal [SignalPlates::CP1T1SG getlever]

£ {![Blocks::BKIT1l occupiedp

[string equal [SignalPlates::CP1T1SG getlever]
Signals::CP1WT2 setaspect RedYellow

set dotltl left
set dotlt2 left
}

] &&

if {![Blocks::BK3T2 occupiedp]

[string equal [SignalPlates::CP1T2SG getlever]
Signals::CP1ET1 setaspect RedYellow

set dotltl right
set dotlt2 right
}
}
Set plate indicators
MainWindow ctcpanel seti CP1SW
MainWindow ctcpanel seti CP1SW
}
default {;# Points still moving.
Set plate indicators
MainWindow ctcpanel seti CP1SW
MainWindow ctcpanel seti CP1SW

Set plate indicators

N
R

N
R

MainWindow ctcpanel seti CP1SW N off
MainWindow ctcpanel seti CP1SW R off

}
}
Set DOT on signal plates
SignalPlates::CP1T1SG setdot $dotltl
SignalPlates::CP1T2SG setdot $dotlt2

set dot2tl none ;# Assume no direction of travel through control point 2,
set dot2t2 none ;# Assume no direction of travel through control point 2,

{! [MainWindow ctcpanel invoke SW2a]
! [MainWindow ctcpanel invoke SW2b]}

&&
{

&&

of f
on

of f
off

{;# Points not consistently aligned

"left"]}

"right"]}

"right"]}

{

{

{

[SignalPlates::CP1T2SG getlever]]l} {

Switch2 (a & b) 0OS is clear. We can start to move the points

Switches::SW2a setmotor [SwitchPlates::CP2SW getlever]
Switches::SW2b setmotor [SwitchPlates::CP2SW getlever]

set s2a [Switches::SW2a getstate]
set s2b [Switches::SW2b getstate]
if {[string equal "$s2a" "$s2b"]1} |
switch $s2a {
normal {;# Aligned for the Main.
if {![Blocks::BK3T1l occupiedp]

[string equal [SignalPlates::CP2T1SG getlever]

Clear to left on track 1

Signals::CP2WT1 setaspect GreenRed

set dot2tl left

if {![Blocks::BK3T2 occupiedp]

[string equal [SignalPlates::CP2T2SG getlever]

Clear to left on track 2

Set the mainline signals.

&&

&&

"left"]}

"left"]}

{

{

"left"]}

"right"]}

{

{

track 1
track 2

Generated by Doxygen

20.3 Example 3: double track crossover

209

Signals::CP2WT2 setaspect GreenRed
set dot2t2 left

}

1f {![Blocks::BK5T1 occupiedp] &&

[string equal

[SignalPlates::CP2T1SG getlever]

Clear to right on track 1
Signals::CP2ET1 setaspect GreenRed
set dot2tl right

}

1t {![Blocks::BK5T2 occupiedp] &&

[string equal

[SignalPlates::CP2T2SG getlever]

Clear to right on track 2
Signals::CP2ET2 setaspect GreenRed
set dot2t2 right

}

Set plate indicators
MainWindow ctcpanel seti CP2SW N on
MainWindow ctcpanel seti CP2SW R off

}

reverse {;# Aligned for crossing over

if {[string equal

[SignalPlates::CP2T1SG getlever]

if {![Blocks::BK3T2 occupiedp] &&
[SignalPlates::CP2T2SG getlever]

[string equal

Signals::CP2WT1 setaspect RedYellow
set dot2tl left
set dot2t2 left

}

£ {![Blocks::BK5T1 occupiedp] &&

[string equal
Signals::CP2ET2 setaspect RedYellow
set dot2tl right
set dot2t2 right

}

[SignalPlates::CP2T1SG getlever]

Set plate indicators
MainWindow ctcpanel seti CP2SW N off
MainWindow ctcpanel seti CP2SW R on

}

default {;# Points still moving.
Set plate indicators
MainWindow ctcpanel seti CP2SW N off
MainWindow ctcpanel seti CP2SW R off

}
}

} else {;# Points not consistently aligned
Set plate indicators
MainWindow ctcpanel seti CP2SW N off
MainWindow ctcpanel seti CP2SW R off

}
}

Set DOT on signal plates
SignalPlates::CP2T1SG setdot $dot2tl
SignalPlates::CP2T2SG setdot $dot2t2
Approach lighting -- darken signals facing empty blocks.
if {![Blocks::BKIT1l occupiedp]} {

Signals::CP1lET1 setaspect Dark

{![Blocks::BK1T2 occupiedp]} {

Signals::CP1ET2 setaspect Dark

}

{![Blocks::BK3T1l occupiedp]} {

Signals::CP1WT1 setaspect Dark
Signals::CP2ET1 setaspect Dark

}

if {![Blocks::BK1T2 occupiedp]} {
Signals::CP1WT2 setaspect Dark
Signals::CP2ET2 setaspect Dark

}

if {![Blocks::BK5T1 occupiedp]} {
Signals::CP2WT1 setaspect Dark

{![Blocks::BK5T2 occupiedp]} {

Signals::CP2WT2 setaspect Dark

}

Pack output bits
CP1:

set CP1_outbits
lappend CP1l_outbits
lappend CP1l_outbits
lappend CP1l_outbits

Output Port B, Card 2

l
[
[
l

Signals:
Signals:
Signals:
Signals:
(Switch motor bits SWla and SWlb)

:CP1ET1 getaspect];# Output
:CP1ET2 getaspect];# Output
:CP1WT1 getaspect];# Output
:CP1WT2 getaspect];# Output

"right"]} {

"right"]} {

[SignalPlates::CP2T2SG getlever]]}

Port
Port
Port
Port

"left"])

"right"]}

Card 0
Card 0
Card 0
Card 2

{

{

CP1ET1
CP1ET2
CPIWT1
CP1WT2

)
)
)
)

{

Generated by Doxygen

210

Dispatcher Examples

lappend CP1_outbits

lappend CP1l_outbits
CP2:

set CP2_outbits
lappend CP2_outbits
lappend CP2_outbits
lappend CP2_outbits
Output Port B, Ca
lappend CP2_outbits

lappend CP2_outbits
Write all output
eval [list CP1l outp
eval [list CP2 outp
update; # Update dis
}
Main Loop End

[expr {[Switches::SWla motorbits] |
[Switches::SWlb motorbits] «
0; # Output

[Signals::CP2ET1 getaspect];# Output
[Signals::CP2ET2 getaspect];# Output
[Signals::CP2WT1 getaspect];# Output
[Signals::CP2WT2 getaspect];# Output

rd 2 (Switch motor bits SW2a and SW2b
[expr {[Switches::SW2a motorbits] |

[Switches::SW2b motorbits] «

0;# Output

ports

uts] S$CP1_outbits

uts] $CP2_outbits

play

And the /O Worksheet:

SMINI @ UA 0 (CP1)
Card No. 0 Output

\
2}]
Port

Port
Port
Port
Port

)

\

2}]
Port

Green
Yellow
Red
Yellow

| CP1ET1 Signal

|

|
Red /

Yellow
Red
Yellow
Red

Green \
| CP1ET2 Signal
I
|
/

CP1WT1 Signal

| | 0 | 1 | Upper
| |1 1 2 | Upper
| | 2 1 3 | Upper
| A | 3 | 4 | Lower
| | 4 | 5 | Lower
| I 51 6
| [6 1 7|
| | 718
| | 01 9 | Upper
| | 1 |10 | Upper
| | 2 |11 | Upper
| B | 3 |12 | Lower
| | 4 |13 | Lower
| | 5 114
| | 6 115
| | 7 116
| | 0 117 | Upper
| | 1 118 | Upper
| | 2 |19 | Upper
| C | 3 120 | Lower
| | 4 121 | Lower
| | 5 122
| | 6 123
| |7 124

|25

|26

127

o U WN RO
N
s}

132

Card No. 1 Input

|PORT |BIT|PIN|DESCRIP

TION OF FUNCTION PERFORMED

| | 0| 1 | Block 1, Track 1 Occupation Detector
| | 1 | 2 | Block 1, Track 2 Occupation Detector
| | 2 | 3 | Block 3, Track 1 Occupation Detector
| 2 | 3] 4 | 0SS 1 Occupation Detector

| | 4 | 5| Normal \ Switch la

| | 51 6 | Reverse / state contacts

| | 6 | 7 | Normal \ Switch la

| | 7 | 8 | Reverse / state contacts

| [01 9|

| [1 110 |

| [2 111 |

I'B | 3112 |

| | 4 113 |

| [5 114 |

Card

Card
Card
Card
Card

Card

N o oo

(unused)

CP2ET1
CP2ET2
CP2WT1

(
(
(
(CP2WT2

)
)
)
)

(unused)

Generated by Doxygen

20.3 Example 3: double track crossover

Card No.

2 Output

|PORT |BIT|PIN|DESCRIPTION OF FUNCTION PERFORMED |

d o U WN R o

W oUW N

Upper
Upper
Upper
Lower
Lower

Green
Yellow
Red
Yellow

| CP1WT2 Signal

|

|
Red /

o U WN R o

| 9
110
11
|12
113
|14
|15

Normal
Revers
Normal
Revers

Switch la
motor
Switch 1b

|
e I
|
motor
I
I
I
I

~~

e

o U WN R O

|17
|18

120
121
|22

124

d o U WN R O

SMINI @ UA 1
Card No.

(CP2)

0 Output

Upper
Upper
Upper
Lower
Lower

Green \
Yellow
Red
Yellow

| CP2ET1 Signal

|

|
Red /

Yellow
Red
Yellow
Red

Green \
| CP2ET2 Signal
|
|
/

Generated by Doxygen

212 Dispatcher Examples

Upper Yellow
Upper Red
Lower Yellow

Upper Green \
|
|
|
Lower Red /

Card No. 1 Input

|PORT |BIT|PIN|DESCRIPTION OF FUNCTION PERFORMED |

Block 5, Track 1 Occupation Detector

| [01 1 |
	1	2	Block 5, Track 2 Occupation Detector
	2	3	Block 3, Track 2 Occupation Detector
2	3	4	OS 2 Occupation Detector
	4	5	Normal \ Switch 2a
	5	6	Reverse / state contacts

	6	7	Normal \ Switch 2b
	7	8	Reverse / state contacts
[0 1 9			
[1 110	I		
[2 111			
I'B	3 112	I	
	4 113		
[5 114			
[6 115	I		
	7 116	I	
[0 117			
[1 118			
[2 119	I		
¢	3120	I	
	4 121	I	
	5 122		
	6 123	I	
	7 124	I	
[0 125	I		
	1 126		
[2127			
I'D	3128	I	
	4 129	I	
[5 130			
	6 131	I	
	7 132	I	
Card No. 2 Output

Upper Green \

Upper Yellow | CP2WT2 Signal
Upper Red |

Lower Yellow |

Lower Red /

Normal \ Switch 2a

Reverse / motor

Normal \ Switch 2b

Reverse / motor

Generated by Doxygen

20.4 Example 4: From Chapter 9 of C/MRI User's Manual V3.0 213

20.4 Example 4: From Chapter 9 of C/MRI User's Manual V3.0

This example, shown below, implements the yard example from Chapter 9 of C/MRI User's Manual V3.0. [3]

This example uses a single SMINI board. The physical push buttons are replaced by "virtual" push buttons on the
computer screen. Otherwise, this code is a drop-in replacement, in Tcl under Linux, for the Quick BASIC code under
MS-Windows included in Bruce Chubb's manual.

Fle Edit View Options Panel CiMH

_ﬁ’—u

Figure 20.4 Example 4: From Chapter 9 of C/MRI User's Manual V3.0

Generated by Doxygen

214 Dispatcher Examples

Here is the code:
Add User code after this line
From chapter 9 of Computer/Model Railroad Interface User’s Manual V3.0.
See example4d.iow for I/O connections for this example.
namespace eval Groups {
Radio groups (from push buttons)
snit::type Group {
option -buttonmap -readonly yes -default {}
variable value
constructor {args} {
$self configurelist $args
$self setvalue {}
}
method getvalue {} {return $value}
method setvalue {newvalue} ({
set value $newvalue
foreach {b v} $options(-buttonmap) {
if {[string equal "$v" "S$value"]} {
MainWindow ctcpanel seti $b I on
} else {
MainWindow ctcpanel seti $b I off
}

}
Group TrackSelect -buttonmap {PB1l Trackl PB2 Track2 PB3 Track3 PB4 Track4
PB5 Track5 PB6 Track6}
}
namespace eval Signals {
Signal types. Encapsulates a signal’s aspect.
Descrete Led types, three aspect (Red, Yellow, Green)
See: Fig 3-5 of The Computer / Model Railroad Interface User’s Manual V3.0
snit::type OneHead {
Single head signals have four states: dark, green, yellow, or red.
typevariable aspects -array {

Dark 0x00
Green 0x01
Yellow 0x02
Red 0x04

}
option -signal -d
variable aspectbits
constructor {args} {
$self configurelist $args
set aspectbits $aspects (Dark)
if {[string length $options(-signal)] > 0} {
MainWindow ctcpanel setv $options(-signal) dark

e {1}

}
}
method setaspect {a} {
set aspectbits $aspects($a)
1f {[string length $options(-signal)] > 0} {
< tch Sa {
Dark {MainWindow ctcpanel setv $options(-signal) dark}
Green {MainWindow ctcpanel setv $options(-signal) green}
Yellow {MainWindow ctcpanel setv $options(-signal) yellow}
Red {MainWindow ctcpanel setv $options(-signal) red}

}
method getaspect {} {return $aspectbits}
}
snit::type TwoHead {
Two head signals have five states: dark, green over red,
yellow over red, red over yellow, and red over red.
typevariable aspects -array {
Dark 0x00
GreenRed 0x11
YellowRed 0x12
RedYellow 0xOc
RedRed 0x14
}
option -signal -de
variable aspectbits
constructor {args} {
$self configurelist $args
set aspectbits $aspects (Dark)
if {[string length $options(-signal)] > 0} {
MainWindow ctcpanel setv $options(-signal) dark

1t {}

}

Generated by Doxygen

20.4 Example 4: From Chapter 9 of C/MRI User's Manual V3.0

215

}

method setaspect {a} {
set aspectbits $aspects($a)
if {[string length $options(-signal)] > 0} {

switch $Sa {
Dark {MainWindow ctcpanel setv S$options(-signal) dark}
GreenRed {MainWindow ctcpanel setv $Soptions(-signal) {green red}}

YellowRed {MainWindow ctcpanel setv $options(-signal) {yellow red}}
RedYellow {MainWindow ctcpanel setv $options(-signal) {red yellow}}
RedRed {MainWindow ctcpanel setv $options(-signal) {red red}}

}
method getaspect {}
}

eturn $aspectbits}

snit::type ThreeHead ({

Three head signals have six states: dark, green over red over red,
yellow over red over red, red over yellow over red, red over red
over yellow, and red over red over red.

typevariable aspects —array {

Dark 0x00
GreenRedRed 0x51
YellowRedRed 0x52
RedYellowRed Ox4c
RedRedYellow 0x34
RedRedRed 0x54

}
option -signal -d
variable aspectbits
constructor {args} {
$self configurelist $args
set aspectbits $aspects (Dark)
if {[string length $options(-signal)] > 0} {
MainWindow ctcpanel setv $options(-signal) dark

}

11t {}

}
method setaspect {a} {
set aspectbits $aspects($a)
1f {[string length $options(-signal)] > 0} {
< itch Sa {
Dark {MainWindow ctcpanel setv S$options(-signal) dark}
GreenRedRed {MainWindow ctcpanel setv $options(-signal) {green red red}}
YellowRedRed {MainWindow ctcpanel setv $options(-signal) {yellow red red}}
RedYellowRed {MainWindow ctcpanel setv $options(-signal) {red yellow red}}
RedRedYellow {MainWindow ctcpanel setv $options(-signal) {red red yellow}}
RedRedRed {MainWindow ctcpanel setv $options(-signal) {red red red}}

}
method getaspect {} {return S$aspectbits}

}

OneHead SIG2RF -signal SIG2RF
OneHead SIG2RE -signal SIG2RE
OneHead SIG2RD -signal SIG2RD
OneHead SIG2RC -signal SIG2RC
OneHead SIG2RB -signal SIG2RB
OneHead SIG2RA -signal SIG2RA
TwoHead SIG2LAB -signal SIG2LAB
OneHead SIG4LA -signal SIG4LA
OneHead SIG4RA -signal SIG4RA

namespace eval Blocks {

Block type (general trackwork).
Encapsulates block occupation detectors.
#
snit::type Block {
Occupation state values
typevariable OCC 1
typevariable CLR 0
Occupation state bit
variable occupiedbit
constructor {} {
set occupiedbit $CLR; # Initialize to clear.
}
Occupation state methods
method occupiedp {} {return [expr {$occupiedbit == $0CC}]}
method setoccupied {value} {
set occupiedbit $value
}
}

Block 0OS1;# Shared by all switches

Block BK1

Generated by Doxygen

216

Dispatcher Examples

}

na

Block BK2
Block BK3
Block BK4
Block BK5
Block BK6
Block BK7
Block BKS8

mespace eval Switches {
Switch type (turnout)
Encapsulates a switch (turnout), including its OS (delegated to a Block
object), its switch motor, and its point position sensor (its state).
snit::type Switch {
component block;#
delegate method * to block;#
variable state unknown;#
Motor bit values
typevariable NOR 1;# 01
typevariable REV 2;# 10
variable motor; #

0S section
Delegate block methods
Sense state (point position)

Motor bits -- used to drive switch
motor.

constructor {} {
Install OS section
install block using Blocks::Block %AUTO%
Initialize motor bits
set motor $NOR
}
State methods
method getstate {} {return $state}
method setstate {statebits} {

if {$statebits == $NOR} {
set state normal

} elseif {$statebits == $SREV} {
set state reverse

} else {

set state unknown
}
}
Motor bit methods
method motorbits {} {return $motor}
method setmotor {mv} {
switch -—exact $mv {
normal {set motor $NOR}
reverse {set motor S$SREV}

}
}
Switch SM1
Switch SM2
Switch SM3
Switch SM4
Switch SM5

Main Loop Start

hile {true} {

Read all ports

set Butte_inbits [Butte inputs]

Unpack input bits

set tempbyte [lindex $Butte_inbits 0];# Port A: Blocks 1-7, 0S1
Blocks::BKl setoccupied [expr {$tempbyte & 0x01}]

Blocks::BK2 setoccupied [expr {$tempbyte » 1 & 0x01}]
Blocks::BK3 setoccupied [expr {S$Stempbyte » 2 & 0x01}]
Blocks::BK4 setoccupied [expr {Stempbyte » 3 & 0x01}]
Blocks::BK5 setoccupied [expr {$tempbyte » 4 & 0x01}]
Blocks::BK6 setoccupied [expr {$tempbyte » 5 & 0x01}]
Blocks::0S1 setoccupied [expr {$tempbyte » 6 & 0x01}]
Blocks::BK7 setoccupied [expr {Stempbyte » 7 & 0x01}]
set tempbyte [lindex $Butte_inbits 1];# Port B: Block 8

Blocks::BK8 setoccupied [expr {$tempbyte & 0x01}]
Invoke all trackwork and get occupicency
MainWindow ctcpanel invoke 0Sla
MainWindow ctcpanel invoke 0Slb
MainWindow ctcpanel invoke 0Slc
MainWindow ctcpanel invoke 0S1d
MainWindow ctcpanel invoke OSle
MainWindow ctcpanel invoke OS1f
MainWindow ctcpanel invoke O0Slg
MainWindow ctcpanel invoke 0Slh
MainWindow ctcpanel invoke 0S1i
MainWindow ctcpanel invoke 0S1j
MainWindow ctcpanel invoke 0Slk

Generated by Doxygen

20.4 Example 4: From Chapter 9 of C/MRI User's Manual V3.0

217

MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
Process switch machines

0s11l
0S1lm
OSln
BK1
BK2
BK3
BK4
BK5S
BK6
BK7
BK8

1f {![Blocks::0S81 occupiedp]} {
switch [::Groups::TrackSelect getvalue] {
normal; Switches::SM5 setmotor normal}

Trackl {Switches::SM4
Track2 {Switches::SM4
Track3 {Switches::
Track4 {Switches
Switches
Track5 {Switches
Switches
Track6 {Switches
Switches::

}
MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
MainWindow ctcpanel invoke
Compute direction of tra
1f {[Block::0S1 occupiedp]
set dotl EastBound
} else {
set dotl Westbound
}
Calculate SIG4RA
Signals::SIG4RA setaspect
{$dotl ne WestBound &&

setmotor
setmotor
setmotor
setmotor
setmotor
setmotor
setmotor
setmotor
setmotor

SM1
SM2
SM3
SM4
SM5
ffic
bAoA

Red

!'[Block::

Signals::SIG4RA setaspect Green

}

Calculate Butte exit signals

Signals::SIG2RA setaspect
Signals::SIG2RB setaspect
Signals::SIG2RC setaspect
Signals::SIG2RD setaspect
Signals::SIG2RE setaspect
Signals::SIG2RF setaspect
set ExitSig Red

if {$dotl ne WestBound &&

set ExitSig Yellow

Red
Red
Red
Red
Red
Red

!'[Blocks:

reverse; Switches:
reverse; Switches:
reverse; Switches:

normal}

reverse; Switches:
reverse; Switches:
reverse; Switches:
reverse; Switches:

BK8 occupiedp]}

:0S1 occupiedp]

{

:SM5 setmotor
:SM3 setmotor
:SM3 setmotor

:SM3 setmotor
:SM1 setmotor
:SM3 setmotor
:SM1 setmotor

normal}
reverse}
normal;

normal;
reverse}
normal;
normal}

&& ![Blocks::BK7 occupiedp]} {

1f {[MainWindow ctcpanel getv SIG4RA] ne red} {set ExitSig Green}
witch [::Groups::TrackSelect getvalue] {

Trackl {Signals::SIG2RA
Track2 {Signals::SIG2RB
Track3 {Signals::SIG2RC
Track4 {Signals::SIG2RD
Track5 {Signals::SIG2RE
Track6 {Signals::SIG2RF

}
}
Signals::SIG2LAB setaspect

Trackl {if {![Blocks:
Track2 {if {![Blocks:
Track3 {if {![Blocks
Track4 {if {![Blocks
Track5 {if {![Blocks
Track6 {if {![Blocks

}
Signals::SIG4LA setaspect
if {$dotl ne EastBound &&

}
}
Pack output bits
Port A, Card 0:

RedRed

f {!'[Blocks::0S81 occupiedp]} {
switch [::Groups::TrackSelect getvalue] {

:BK5 occupiedp]
: :BK5 occupiedp]

Red

! [Blocks:

Signals::SIG4LA setaspect Yellow

1f {[MainWindow ctcpanel getv SIG2LAB]
Signals::SIG4LA setaspect Green

setaspect $ExitSig}
setaspect $ExitSig}
setaspect $ExitSig}
setaspect $ExitSig}
setaspect $ExitSig}
setaspect $ExitSig}

:BK1 occupiedp]} {Signals:
:BK2 occupiedp]}
:BK3 occupiedp]}
:BK4 occupiedp]} {Signals:
}
}

{Signals:
{Signals:

{Signals:
{Signals:

:BK7 occupiedp]}

:SIG2LAB
:SIG2LAB
:SIG2LAB
:SIG2LAB
:SIG2LAB
:SIG2LAB

{

ne {red red}} {

setaspect
setaspect
setaspect
setaspect
setaspect
setaspect

YellowRed}}
RedYellow} }
RedYellow}}
RedYellow} }
RedYellow}}
RedYellow} }

Generated by Doxygen

218

Dispatcher Examples

set Butte_outbits

Port B, Card O0:
lappend Butte_outbits

Port C, Card O:
lappend Butte_outbits

Port A, Card 2:
lappend Butte_outbits

Port B, Card 2:
lappend Butte_outbits

Port C, Card 2:

lappend Butte_outbits 0

[expr

[expr

[expr

[expr

[expr

Write all output ports

eval [list Butte outputs]
update; # Update display

}
Main Loop End

And the I/O Worksheet:
SMINI @ UA O (Butte)
Card No. 0 Output

{[Signals:
[Signals:

{[Signals:
[Signals:

[Switches:

{[Signals:

[Signals::
[Switches:

{[Signals:
[Switches

[Switches:

{[Signals:
[Signals:

[Switches:

SButte_outbits

:SIG2LAB
:SIG2RA

:SIG2RB
:SIG2RC

:SM1

:SIG2RD

SIG2RE
:SM2

:SIG2RF

:SM3
:SM4

:SIG4LA
:SIG4RA

:SM5

getaspect] |
getaspect] «

getaspect] |
getaspect] «
motorbits] «

getaspect] |
getaspect] «
motorbits] «

getaspect] |
motorbits] «
motorbits] «

getaspect] |
getaspect] «
motorbits] «

|PORT |BIT|PIN|DESCRIPTION OF FUNCTION PERFORMED

| | 0 | 1 | Upper Green \

| | 1 | 2 | Upper Yellow | SIG2LAB Signal
| | 2 | 3 | Upper Red |

| A | 3 | 4 | Lower Yellow |

| | 4 | 5 | Lower Red /

| | 51 6 | Green \

| | 6 | 7 | Yellow | SIG2RA

| | 71 8 | Red /

| | 0| 9 | Green \

| | 1 110 | Yellow | SIG2RB Signal
| | 2 |11 | Red /

| B | 3 |12 | Green \

| | 4 113 | Yellow | SIG2RC Signal
| | 5 114 | Red /

| | 6 |15 | Normal \ sM1l

| | 7 |16 | Reverse /

| | 0 |17 | Green \

| | 1 118 | Yellow | SIG2RD Signal
| | 2 119 | Red /

| C | 3 120 | Green \

| | 4 121 | Yellow | SIG2RE Signal
| | 5 122 | Red /

| | 6 123 | Normal \ SM2

| | 7 |24 | Reverse /

| | 0 125 |

| | 1 126 |

| |2 127 |

I'D | 3128 |

| [4 129 |

| | 5130 |

| | 6 131 |

| |7 132 |

Card No. 1 Input

|PORT |BIT|PIN|DESCRIPTION OF FUNCTION PERFORMED

oUW N O
W oUW N

BK1 Occupation
BK2 Occupation
BK3 Occupation
BK4 Occupation
BK5 Occupation
BK6 Occupation
0S1 Occupation
BK7 Occupation

Detector
Detector
Detector
Detector
Detector
Detector
Detector
Detector

Generated by Doxygen

20.4 Example 4: From Chapter 9 of C/MRI User's Manual V3.0

219

oUW N O

oUW O

Card No. 2 Output

| | 0] 1 | Green
| | 1 |1 2 | Yellow
| | 2 | 3 | Red

| A | 3 | 4 | Normal
| | 4 | 5 | Reverse
| | 51 6 | Normal
| | 6 | 7 | Reverse
| |71 8 |

| | 0] 9 | Green
| | 1 110 | Yellow
| | 2 |11 | Red

| B | 3 112 | Green
| | 4 |13 | Yellow
| | 5 |14 | Red

| | 6 |15 | Normal
| | 7 |16 | Reverse
| [0 117 |

| [1118 |

| [2 119 |

¢ | 3 120 |

| | 4 121 |

| | 5 122 |

| | 6 123 |

| |7 124 |

| | 0 125 |

| | 1 126 |

| |2 127 |

| D | 3 128 |

| | 4 129 |

| | 5 130 |

| | 6 131 |

| |7 132 |

N~ N — —

SIG2RF Signal
SM3

SM4

SIG4LA Signal

SIG4RA Signal

SM5

Generated by Doxygen

220 Dispatcher Examples

Generated by Doxygen

Chapter 21

SatelliteDaemon

Satellite computer Daemon

21.1 SYNOPSIS

SatelliteDaemon [-debug] [-port listenport] [-log logfilename] [-nodaemon] [-addpath path] [-addpackage path]
SatelliteDaemon -extenddaemon newDaemon [-tclkit tclkit] packageDir ...

21.2 DESCRIPTION

This is the deamon program that runs on 'satellite’ computers on a network of computers controlling a layout. These
satellite computers could be Raspberry Pis (running Rasperian) or small Intel/AMD systems (eg mini-Itx systems or
other Intel/AMD SBCs running some version of Linux). Somewhere on the network would be a (desktop) computer
running the master (client) package, typically in the context of a Dispatcher control panel.

The satellite systems would be connected to a collection of USB interface boards (or possibly using the GPIO pins on a
Raspberry) that would interface to various actuating devices on the layout, such as turnout motors, signals, uncoupling
magnets, as well as various sensors that might be in use.

The second form (SatelliteDaemon -extenddaemon newDaemon ...) of the command creates a new StarPak with the
listed package dirs copied into the StarPak. The -tclkit defaults to /usr/local/bin/tclkit.

21.3 OPTIONS

+ -debug This option turns on verbose debug logging.

« -port This option selects the port to listen on (default: 40000).

« -log This option selects the name of the log filename (default: $HOME/SatelliteDaemon.log).
» -nodaemon This option supresses daemonisation to facilitate debugging.

+ -addpath This option adds additional search paths for packages. (These packages are always available: the core
Tcl packages, snit, Azatrax, and Cmri.)

+ -addpackage This option loads additional packages into the daemon's internal virtual file system.

+ -extenddaemon This option creates a new version of the daemon with additional package directories included.

222 SatelliteDaemon

21.4 PROTOCOL

The protocol is simple. The daemon creates a 'safe’ interpreter and simply feeds the command stream coming in to this
interpreter and sends this interpreter's output back to the master.

21.5 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 22

raildriverd

Raildriver USB Hotplug Daemon

22.1 SYNOPSIS

raildriverd [-debug] busnum devnum

22.2 DESCRIPTION

This is the deamon program for the Rail Driver. It is started by the USB Hotplug code. See Hotplugging scripts and setup.
for details. It should not be started or stopped by hand!

The API to use this deamon is described in Model Railroad System Programming Guides, Part |. User programs connect
to this deamon through a Tcp/Ip port. It allows multiple programs to access a single Raildriver device. These programs
can then in turn implement various functionallity for the various levers, knobs, switches, and buttons on the Raildriver
device.

22.3 OPTIONS

+ -debug This option turns on verbose debug logging.

22.4 PARAMETERS

* busnum This is the USB bus number the device is connected to.

« devnum This is the USB device number the device is connected to.

224 raildriverd

22.5 Hotplugging scripts and setup.
There are two ways to set up auto starting of this daemon.

1. Using the Hotplug daemon. Copy the raildriverd.hotplug script to /etc/hotplug/usb/ as raildriverd Use the print-
usb-usermap stript to append a line to /etc/hotplug/usb.usermap.

2. Using udev. Copy 90-raildriver.rules to /etc/udev/rules.d/ and copy raildriverd.udev to /lib/udev/ as raildriverd

22.6 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 23

OpenLCB Tcp/lp Hub Server

OpenLCB Tcp Hub daemon.

23.1 SYNOPSIS

OpenLCBTcpHub [-host localhost] [-port 12000] [-debug]

23.2 DESCRIPTION

This program is a server daemon that implements a hub for Native OpenLCB over Tcp/Ip that accepts connections from
OpenLCB over Tcp/lp nodes and forwards OpenLCB messages between clients.

23.3 PARAMETERS

none

23.4 OPTIONS

* -log logfilename The name of the logfile. Defaults to OpenLCBTcpHub.log

* -host hostname The name or IP address of the host to bind to. Defaults to localhost (binds only to the local
loopback device). Using an address of 0.0.0.0 will bind to all interfaces.

 -port portnumber The Tcp/Ip port to listen on. Defaults to 12000.
+ -debug Turns on debug logging.

» -remote host[:port], -remote0 host[:port], -remote1 host[:port], ... -remote9 host[:port] Optional remote Tcp/Ip
hubs.

226 OpenLCB Tcp/lp Hub Server

23.5 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 24

OpenLCB GridConnect Tcp/lp Hub Server

OpenLCB GridConnect Tcp Hub daemon.

24.1 SYNOPSIS

OpenLCBGCTcpHub [-host localhost] [-port 12021] [-debug] [connection options]

24.2 DESCRIPTION

This program is a server daemon that implements a hub for OpenLCB over Tcp/Ip that accepts connections from Open«
LCB over GridConnect over Tcp/lp nodes and forwards OpenLCB messages between clients. It can also connect to
physical CAN busses using GridConnect messaging over (USB) Serial port connection.

24.3 PARAMETERS

none

24.4 OPTIONS

* -log logfilename The name of the logfile. Defaults to OpenLCBGCTcpHub.log

» -host hosthame The name or IP address of the host to bind to. Defaults to localhost (binds only to the local
loopback device). Using an address of 0.0.0.0 will bind to all interfaces.

* -port portnumber The Tcp/Ip port to listen on. Defaults to 12021.

+ -debug Turns on debug logging.

228 OpenLCB GridConnect Tcp/lp Hub Server

 -dev ttydev, -dev0 ttydev, -dev1 ttydev, ... -dev9 ttydev Optional serial ports connected to CAN busses using
GridConnect.

+ -remote host[:port], -remote0 host[:port], -remote1 host[:port], ... -remote9 host[:port] Optional remote Tcp/Ip hubs
using GridConnect.

+ -can socketname, -can0 socketname, -can1 socketname, ... -can9 socketname Optional CAN Socket connected
CAN networks.

24.5 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 25

OpenLCB Router Daemon (Server)

Routes between OpenLCB GridConnect/CAN and binary OpenLCB over Tcp/Ip

25.1 SYNOPSIS

Router [-bhost localhost] [-bport 12000] [-cmode Tcpip|Socket|USB] [-chost localhost] [-cport 12021] [-csocket can0]
[-cdevice /dev/ttyACMO] [-nid 05:01:01:01:22:00] [-log Router.log] [-debug] [-nodename ""] [-nodedescription "]

25.2 DESCRIPTION

This program is a server daemon that implements a router between an OpenLCB/CAN segment and a native OpenLCB
over Tcp/lp network.

25.3 PARAMETERS

none

25.4 OPTIONS

» -bhost The binary OpenLCB over Tcp/Ip host to connect to.
» -bport The tcp port to connect with.

» -cmode The CAN If mode: Tcpip means GridConnect over Tcp/lp, Socket means use a CAN famile Socket (Linux
only) (using the TclSocketCAN API), and USB means using a USB Serial port connection using GridConnect
(such as a RR-CirKits USB Buffer-LCC).

+ -chost The GridConnect over Tcp/lIp host to connect to (only when -cmode is Tcpip).

230 OpenLCB Router Daemon (Server)

 -cport The tcp port to connect with (only when -cmode is Tcpip).
 -csocket The CAN socket name (only when -cmode is Socket).

« -cdevice The tty device to connect to (only when -cmode is USB).
+ -nid The OpenLCB Node ID for the router.

+ -log The file to use for logging.

» -debug Enable debugging messages.

» -nodename The name of this router node.

» -nodedescription The description of this router node.

25.5 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 26

OpenLCB MRD2 Node

OpenLCB MRD2 node

26.1 SYNOPSIS

OpenLCB_MRD2 [-configure] [-sampleconfiguration] [-debug] [-configuration confgile]

26.2 DESCRIPTION

This program is a daemon that implements an OpenLCB node for one or more Azatrax MRD2 devices.

26.3 PARAMETERS

none

26.4 OPTIONS

+ -log logfilename The name of the logfile. Defaults to OpenLCB_MRD2.log
« -configure Enter an interactive GUI configuration tool. This tool creates or edits an XML configuration file.

+ -sampleconfiguration Creates a sample configuration file that can then be hand edited (with a handy text editor
like emacs or vim).

« -configuration confgile Sets the name of the configuration (XML) file. The default is mrd2conf.xml.

 -debug Turns on debug logging.

232 OpenLCB MRD2 Node

26.5 CONFIGURATION

The configuration file for this program is an XML formatted file. Please refer to the OpenLCB Daemons (Hubs and Virtual nodes)
chapter of the User Manual for the details on the schema for this XML formatted file. Also note that this program contains
a built-in editor for its own configuration file.

26.6 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 27

OpenLCB PiGPIO node

OpenLCB PiGPIO node

27.1 SYNOPSIS

OpenLCB_PiGPIO [-configure] [-sampleconfiguration] [-debug] [-configuration confgile]

27.2 DESCRIPTION

This program is a daemon that implements an OpenLCB node for the GPIO pins on a Raspberry Pi.

27.3 PARAMETERS

none

27.4 OPTIONS

+ -log logfilename The name of the logfile. Defaults to OpenLCB_PiGPIO.log
« -configure Enter an interactive GUI configuration tool. This tool creates or edits an XML configuration file.

+ -sampleconfiguration Creates a sample configuration file that can then be hand edited (with a handy text editor
like emacs or vim).

« -configuration confgile Sets the name of the configuration (XML) file. The default is pigpioconf.xml.

 -debug Turns on debug logging.

234 OpenLCB PiGPIO node

27.5 CONFIGURATION

The configuration file for this program is an XML formatted file. Please refer to the OpenLCB Daemons (Hubs and Virtual nodes)
chapter of the User Manual for the details on the schema for this XML formatted file. Also note that this program contains
a built-in editor for its own configuration file.

27.6 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 28

OpenLCB PiMCP23008 node

OpenLCB PiMCP23008 node

28.1 SYNOPSIS

OpenLCB_PiMCP23008 [-configure] [-sampleconfiguration] [-debug] [-configuration confgile]

28.2 DESCRIPTION

This program is a daemon that implements an OpenLCB node for the GPIO pins provided by a MCP23008 12C port
expander on a Raspberry Pi.

28.3 PARAMETERS

None

28.4 OPTIONS

* -log logfilename The name of the logfile. Defaults to OpenLCB_PiMCP23008.log
« -configure Enter an interactive GUI configuration tool. This tool creates or edits an XML configuration file.

+ -sampleconfiguration Creates a sample configuration file that can then be hand edited (with a handy text editor
like emacs or vim).

« -configuration confgile Sets the name of the configuration (XML) file. The default is pimcp23008conf.xml.

 -debug Turns on debug logging.

236 OpenLCB PiMCP23008 node

28.5 CONFIGURATION

The configuration file for this program is an XML formatted file. Please refer to the OpenLCB Daemons (Hubs and Virtual nodes)
chapter of the User Manual for the details on the schema for this XML formatted file. Also note that this program contains
a built-in editor for its own configuration file.

28.6 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 29

OpenLCB PiMCP23017 node

OpenLCB PiMCP23017 node

29.1 SYNOPSIS

OpenLCB_PiMCP23017 [-configure] [-sampleconfiguration] [-debug] [-configuration confgile]

29.2 DESCRIPTION

This program is a daemon that implements an OpenLCB node for the GPIO pins provided by a MCP23017 12C port
expander on a Raspberry Pi.

29.3 PARAMETERS

None

29.4 OPTIONS

+ -log logfilename The name of the logfile. Defaults to OpenLCB_PiMCP23017.log
« -configure Enter an interactive GUI configuration tool. This tool creates or edits an XML configuration file.

+ -sampleconfiguration Creates a sample configuration file that can then be hand edited (with a handy text editor
like emacs or vim).

« -configuration confgile Sets the name of the configuration (XML) file. The default is pimcp23017conf.xml.

 -debug Turns on debug logging.

238 OpenLCB PiMCP23017 node

29.5 CONFIGURATION

The configuration file for this program is an XML formatted file. Please refer to the OpenLCB Daemons (Hubs and Virtual nodes)
chapter of the User Manual for the details on the schema for this XML formatted file. Also note that this program contains
a built-in editor for its own configuration file.

29.6 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 30

OpenLCB PiMCP23017 as signal driver node

OpenLCB PiMCP23017 as signal driver node

30.1 SYNOPSIS

OpenLCB_PiMCP23017_signal [-configure] [-sampleconfiguration] [-debug] [-configuration confgile]

30.2 DESCRIPTION

This program is a daemon that implements an OpenLCB node for the GPIO pins provided by a MCP23017 12C port
expander on a Raspberry Pi. This version groups the pins as signal heads. All pins are set as outputs.

30.3 PARAMETERS

None

30.4 OPTIONS

+ -log logfilename The name of the logfile. Defaults to OpenLCB_PiMCP23017_signal.log
« -configure Enter an interactive GUI configuration tool. This tool creates or edits an XML configuration file.

+ -sampleconfiguration Creates a sample configuration file that can then be hand edited (with a handy text editor
like emacs or vim).

« -configuration confgile Sets the name of the configuration (XML) file. The default is pimcp23017signalconf.xml.

 -debug Turns on debug logging.

240 OpenLCB PiMCP23017 as signal driver node

30.5 CONFIGURATION

The configuration file for this program is an XML formatted file. Please refer to the OpenLCB Daemons (Hubs and Virtual nodes)
chapter of the User Manual for the details on the schema for this XML formatted file. Also note that this program contains
a built-in editor for its own configuration file.

30.6 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 31

OpenLCB program for the MCP23017-based quad
signal head HAT

OpenLCB OpenLCB for the MCP23017-based quad signal head HAT

31.1 SYNOPSIS

OpenLCB_QuadSignal [-configure] [-sampleconfiguration] [-debug] [-configuration confgile]

31.2 DESCRIPTION

This program is a daemon that implements an OpenLCB node for the MCP23017-based quad signal head HAT for the
Raspberry Pi. Each signal mast can have 1, 2, or 3 "heads". Each head has four "lamps" (unused lamps can be set to
"None"). For a given aspect, a lamp can be on, off, blink, or reverse blink.

31.3 PARAMETERS

None

31.4 OPTIONS

+ -log logfilename The name of the logfile. Defaults to OpenLCB_QuadSignal.log
+ -configure Enter an interactive GUI configuration tool. This tool creates or edits an XML configuration file.

» -sampleconfiguration Creates a sample configuration file that can then be hand edited (with a handy text editor
like emacs or vim).

« -configuration confgile Sets the name of the configuration (XML) file. The default is quadsignalconf.xml.

 -debug Turns on debug logging.

242 OpenLCB program for the MCP23017-based quad sighal head HAT

31.5 CONFIGURATION

The configuration file for this program is an XML formatted file. Please refer to the OpenLCB Daemons (Hubs and Virtual nodes)
chapter of the User Manual for the details on the schema for this XML formatted file. Also note that this program contains
a built-in editor for its own configuration file.

31.6 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 32

OpenLCB PiSPIMax7221 node

OpenLCB PiSPIMax7221 node

32.1 SYNOPSIS

OpenLCB_PiSPIMax7221 [-configure] [-sampleconfiguration] [-debug] [-test alljm-n] [-configuration confgile]

32.2 DESCRIPTION

This program is a daemon that implements an OpenLCB node for the a Max7221 based signal driver.

32.3 PARAMETERS

None

32.4 OPTIONS

* -log logfilename The name of the logfile. Defaults to OpenLCB_PiSPIMax7221.log
« -configure Enter an interactive GUI configuration tool. This tool creates or edits an XML configuration file.

» -sampleconfiguration Creates a sample configuration file that can then be hand edited (with a handy text editor
like emacs or vim).

« -configuration confgile Sets the name of the configuration (XML) file. The default is PiSPIMax7221conf.xml.
+ -debug Turns on debug logging.

- -test all|n-m Test all or signals n though m. Run continously until killed.

244 OpenLCB PiSPIMax7221 node

32.5 CONFIGURATION

The configuration file for this program is an XML formatted file. Please refer to the OpenLCB Daemons (Hubs and Virtual nodes)
chapter of the User Manual for the details on the schema for this XML formatted file. Also note that this program contains
a built-in editor for its own configuration file.

32.6 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 33

OpenLCB Virtual Track Circuits node

OpenLCB Virtual Track Circuits node

33.1 SYNOPSIS

OpenLCB_TrackCircuits [-configure] [-sampleconfiguration] [-debug] [-configuration confgile]

33.2 DESCRIPTION

This program is a daemon that implements an OpenLCB node for one or more Virtual Track Circuits (much like the track
circuits coded in the RR Cirkits Tower-LCC nodes).

There are seven (7) regular aspect events (Clear, Advance Approach, Approach Limited, Approach Medium, Ap-
proach, Approach Slow, and Accelerated Tumble Down), plus Start, Non-Vital (occupied), Non-Vital (normal),
Power/Lamp (failed), and Power/Lamp (nhormal).

33.2.1 Code rate and aspect.

+ 7 Clear.

» 4 Advance Approach.

» 3 Approach Limited.

» 8 Approach Medium.

» 2 Approach.

* 9 Approach Slow.

* 6 Accelerated Tumble Down.

» 5 Non-Vital code indicating track occpancy, or a hand-thrown switch in the block out of normal correspondence.

« M Non-Vital code indicating power off in the block, or a lamp out of condition in the block. Power Off will indicate
from east end CP, lamp out from the west end CP.

246 OpenLCB Virtual Track Circuits node

33.3 PARAMETERS

none

33.4 OPTIONS

* -log logfilename The name of the logfile. Defaults to OpenLCB_TrackCircuits.log
» -configure Enter an interactive GUI configuration tool. This tool creates or edits an XML configuration file.

» -sampleconfiguration Creates a sample configuration file that can then be hand edited (with a handy text editor
like emacs or vim).

+ -configuration confgile Sets the name of the configuration (XML) file. The default is tracksconf.xml.

+ -debug Turns on debug logging.

33.5 CONFIGURATION

The configuration file for this program is an XML formatted file. Please refer to the OpenLCB Daemons (Hubs and Virtual nodes)
chapter of the User Manual for the details on the schema for this XML formatted file. Also note that this program contains
a built-in editor for its own configuration file.

33.6 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 34

OpenLCB Logic node

OpenLCB Logic node

34.1 SYNOPSIS

OpenLCB_Logic [-configure] [-sampleconfiguration] [-debug] [-configuration confgile]

34.2 DESCRIPTION

This program is a daemon that implements an OpenLCB node for one or more Logic Element (much like the logic
elements coded in the RR Cirkits Tower-LCC nodes).

Each logic element has two variable inputs, variable 1 and variable 2, which can be set to true or false using LCC
events. There are seven (7) boolean operators: and, or, xor, and change, or change, variable 1 then variable 2, and
constant true. Logic elements can be either single, or part of a group. There are two group types, mast and ladder. A
mast group is always evaluated from top to bottom and terminates at the first true result which produces an action. A
ladder group is evaluated from the triggered logic to the bottom and all true results result in actions. Actions consist of
up to four events being produced, either right away or after a delay. The actions can be retriggerable or not.

34.3 PARAMETERS

none

248 OpenLCB Logic node

34.4 OPTIONS

* -log logfilename The name of the logfile. Defaults to OpenLCB_Logic.log
« -configure Enter an interactive GUI configuration tool. This tool creates or edits an XML configuration file.

» -sampleconfiguration Creates a sample configuration file that can then be hand edited (with a handy text editor
like emacs or vim).

« -configuration confgile Sets the name of the configuration (XML) file. The default is logicconf.xml.

+ -debug Turns on debug logging.

34.5 CONFIGURATION

The configuration file for this program is an XML formatted file. Please refer to the OpenLCB Daemons (Hubs and Virtual nodes)
chapter of the User Manual for the details on the schema for this XML formatted file. Also note that this program contains
a built-in editor for its own configuration file.

34.6 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 35

OpenLCB Acela Node

OpenLCB Acela node

35.1 SYNOPSIS

OpenLCB_Acela [-configure] [-sampleconfiguration] [-debug] [-configuration configfile]

35.2 DESCRIPTION

This program is a daemon that implements an OpenLCB node for an Acela network.

35.3 PARAMETERS

none

35.4 OPTIONS

* -log logfilename The name of the logfile. Defaults to OpenLCB_Acela.log
« -configure Enter an interactive GUI configuration tool. This tool creates or edits an XML configuration file.

» -sampleconfiguration Creates a sample configuration file that can then be hand edited (with a handy text editor
like emacs or vim).

+ -configuration configfile Sets the name of the configuration (XML) file. The default is acelaconf.xml.

+ -debug Turns on debug logging.

250 OpenLCB Acela Node

35.5 CONFIGURATION

The configuration file for this program is an XML formatted file. Please refer to the OpenLCB Daemons (Hubs and Virtual nodes)
chapter of the User Manual for the details on the schema for this XML formatted file. Also note that this program contains
a built-in editor for its own configuration file.

35.6 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 36

OpenLCB CMRI Node

OpenLCB CMRI node

36.1 SYNOPSIS

OpenLCB_CMRI [-configure] [-sampleconfiguration] [-debug] [-configuration confgile]

36.2 DESCRIPTION

This program is a daemon that implements an OpenLCB node for one or more CMRI nodes on a CMRI network.

36.3 PARAMETERS

none

36.4 OPTIONS

+ -log logfilename The name of the logfile. Defaults to OpenLCB_CMRI.log
« -configure Enter an interactive GUI configuration tool. This tool creates or edits an XML configuration file.

+ -sampleconfiguration Creates a sample configuration file that can then be hand edited (with a handy text editor
like emacs or vim).

« -configuration confgile Sets the name of the configuration (XML) file. The default is cmriconf.xml.

 -debug Turns on debug logging.

252 OpenLCB CMRI Node

36.5 CONFIGURATION

The configuration file for this program is an XML formatted file. Please refer to the OpenLCB Daemons (Hubs and Virtual nodes)
chapter of the User Manual for the details on the schema for this XML formatted file. Also note that this program contains
a built-in editor for its own configuration file.

36.6 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 37

JMRI Tables to LayoutDB converter

Converts a JMRI Table file to a LayoutDB file

37.1 SYNOPSIS

JMRITable2LayoutDB jmrixml layoutdbxml

37.2 DESCRIPTION

Convert a JMRI Table XML file to a LayoutControlDB xml file.

37.3 PARAMETERS

* jmrixml The JMRI XML file to convert.

« layoutdbxml The LayoutControlDB xml file to output

37.4 OPTIONS

None.

37.5 AUTHOR

Robert Heller <heller@deepsoft.com>

254 JMRI Tables to LayoutDB converter

Generated by Doxygen

Chapter 38

LayoutDB to JMRI Tables converter

Converts a LayoutDB file to a JMRI Table file

38.1 SYNOPSIS

LayoutDB2JMRITable layoutdbxml jmrixml

38.2 DESCRIPTION

Convert a Layout Control DB XML file to a JMRI Table XML file

38.3 PARAMETERS

* layoutdbxml The Layout Control DB XML file to convert
« jmrixml The JMRI Table XML file to output

38.4 OPTIONS

None

38.5 AUTHOR

Robert Heller <heller@deepsoft.com>

256 LayoutDB to JMRI Tables converter

Generated by Doxygen

Chapter 39

Offline LCC Node Editor

An offline node configuration editor. Edits a backup config file for a LCC node.

39.1 SYNOPSIS

OfflineLCCNodeEditor xmilfile [backupconfigfile ...]

39.2 DESCRIPTION

Uses the saved CDI XML file from the node to create the configuration editor display and loads a backup config file into
the configuration editor and saves changes to a new backup config file.

39.3 PARAMETERS

» xmlfile - the CDI XML file for the type of node. Required, no default.

» backupconfigfile - [optional] backup config file(s) to edit.

258

Offline LCC Node Editor

39.4 OPTIONS

39.4.1 X11 Resource Options

+ -colormap: Colormap for main window
 -display: Display to use

» -geometry: Initial geometry for window

» -name: Name to use for application

+ -sync: Use synchronous mode for display server
+ -visual: Visual for main window

+ -use: Id of window in which to embed application

39.4.2 Other options

* -help Print a short help message and exit.

 -debug Turn on debug output.

39.5 AUTHOR

Robert Heller <heller@deepsoft.com>

Generated by Doxygen

Chapter 40

Help

This help window contains some basic navigation features. There are buttons for traversing the history stack. There are
also key bindings within the help window itself:

+ s Search forward. Searches forward in the text for the next occurrence of the specified text.

 r Search backward. Searches backward in the text for the next occurrence of the specified text.
« f History forward. Goes to the next page in the history stack.

« b History backward. Goes to the previous page in the history stack.

+ Tab Next link. Goes to the next hyperlink.

+ Control-Tab Previous link. Goes to the previous hyperlink.

260 Help

Generated by Doxygen

Chapter 41

Version

TT Support Library version is 1.0.2. FCF Support Library version is 1.0.4. CMri Library version is 1.0.0. System patch
level is 2.2.1. Azatrax Library version is 1.0.0.

262 Version

Generated by Doxygen

Chapter 42

GNU GENERAL PUBLIC LICENSE

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU
General Public License is intended to guarantee your freedom to share and change free software—to make sure the
software is free for all its users. This General Public License applies to most of the Free Software Foundation's software
and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to
make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender
the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the
rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty
for this free software. If the software is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will not reflect on the original authors'
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors
of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we
have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

264 GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it
may be distributed under the terms of this General Public License. The "Program"”, below, refers to any such program
or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that
is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into
another language. (Hereinafter, translation is included without limitation in the term "modification”.) Each licensee is
addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope.
The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute
a work based on the Program (independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in
exchange for a fee.

1. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program,
and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also
meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and separate works in themselves, then this License, and its
terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms
of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the
Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

Generated by Doxygen

265

1. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable
form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work,
complete source code means all the source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the executable. However, as a special exception,
the source code distributed need not include anything that is normally distributed (in either source or binary form) with
the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place counts as distribution of the source code, even though
third parties are not compelled to copy the source along with the object code.

1. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically termi-
nate your rights under this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full compliance.

You are not required to accept this License, since you have not signed it. However, nothing else grants you permission
to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program
or works based on it.

1. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives
a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

(a) If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

Generated by Doxygen

266 GNU GENERAL PUBLIC LICENSE

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section
is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

1. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Program under this License may add an explicit geograph-
ical distribution limitation excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

1. The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which
applies to it and "any later version", you have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

1. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different,
write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write
to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse
of software generally.

NO WARRANTY

1. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PR«
OGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WIT+
HOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

Generated by Doxygen

267

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT
HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE«
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve
this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where
the full notice is found.

\<one line to give the program’s name and a brief idea of what it does.\>
Copyright (C) \<year\> \<name of author\>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the General Public License.
Of course, the commands you use may be called something other than ‘show w’ and ‘show ¢’; they could even be
mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer”
for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes passes at compilers)
written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is
a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is
what you want to do, use the GNU Library General Public License instead of this License.

Generated by Doxygen

268 GNU GENERAL PUBLIC LICENSE

Generated by Doxygen

Bibliography

[1] Bruce Chubb. How to Operate Your Model Railroad. Kalmbach Books, 1977, 1978, 1991.
[2] Bruce Chubb. Build Your Own Universal Computer Interface. Tab Books, 1989.
[3] Bruce Chubb. The Computer/Model Railroad Interfase (C/MRI) User’s Manual, 2003.

[4] Robert Heller. Model Railroad System A collection of utilities for Model Railroaders, Programming Guides, 2007-
2013.

270 BIBLIOGRAPHY

Generated by Doxygen

Index

cabs, creating, 56, 64, 74
CAN, 9
cars, saving, 99

Freight Car Forwarder, main GUI, 93

LCC, 9
LM100, 49
LM50, 49

MRD2-S, 43, 44
MRD2-U, 43, 44

notes, creating and editing, 75

Ohm's Law, 133
OpenLCB, 9

Reports, printing, 122

SL2, 46

SMINI, 5

SR4, 43, 45

station stops, creating, 56, 64

stations, duplicate, linking and unlinking, 72
storage tracks, creating, 56, 64, 73

SUSIC, 5, 6

timetable, printing, 81

train, adding a schedule, 57

train, adding storage tracks, 57, 70
train, deleting, 71

trains, creating, 56, 67

USIC, 5, 6

Yard Lists, printing, 101, 119

	1 Preface
	2 Introduction
	2.1 How this manual is organized.

	3 Universal Test Program Reference
	3.1 Main GUI Elements
	3.1.1 Main Window
	3.1.2 Open New Port

	3.2 Tests
	3.2.1 Test Output Card
	3.2.2 Wraparound Test

	4 OpenLCB Program Reference
	4.1 Start up
	4.1.1 Command Line Options
	4.1.2 GUI Startup

	4.2 Main GUI Elements
	4.2.1 Configuration Tools
	4.2.1.1 Memory Configuration Options
	4.2.1.2 Configuration R/W Tool
	4.2.1.3 CDI Configuration Tool

	4.2.2 Event Tools
	4.2.2.1 Send Event Tool
	4.2.2.2 Received Events

	5 OpenLCB Daemons (Hubs and Virtual nodes)
	5.1 Hub Daemons
	5.2 Virtual Nodes
	5.2.1 Common Node Configuration
	5.2.2 EventExchange node for Azatrax MRD2 boards.
	5.2.2.1 XML Schema for configuration files

	5.2.3 EventExchange node for Raspberry Pi GPIO pins.
	5.2.3.1 XML Schema for configuration files

	5.2.4 EventExchange node for MCP23008 GPIO pins.
	5.2.4.1 XML Schema for configuration files

	5.2.5 EventExchange node for MCP23017 GPIO pins.
	5.2.5.1 XML Schema for configuration files

	5.2.6 EventExchange node for MCP23017 as signal heads.
	5.2.6.1 XML Schema for configuration files

	5.2.7 EventExchange node for the quad signal head HAT.
	5.2.7.1 XML Schema for configuration files

	5.2.8 EventExchange node for a SPI connected MAX7221 Signal Driver.
	5.2.8.1 XML Schema for configuration files

	5.2.9 EventExchange node for virtual track circuits.
	5.2.9.1 XML Schema for configuration files

	5.2.10 EventExchange node for logic blocks.
	5.2.10.1 XML Schema for configuration files

	5.2.11 EventExchange node for a CTI Acela network.
	5.2.11.1 XML Schema for configuration files

	5.2.12 EventExchange node for a C/MRI network.
	5.2.12.1 XML Schema for configuration files

	6 Offline LCC Node Editor Reference
	6.1 Command Line Parameters and Options
	6.1.1 Options
	6.1.2 X11 Resource Options
	6.1.2.1 Other options

	6.1.3 Parameters

	6.2 Main GUI Elements

	7 Layout Control Database
	7.1 Turnouts
	7.2 Blocks
	7.3 Signals
	7.4 Sensors
	7.5 Controls

	8 Azatrax Test Programs Reference
	8.1 MRD Test Program Reference
	8.1.1 Synopsis
	8.1.2 Main GUI Screen

	8.2 MRD Sensor Loop Reference
	8.2.1 Synopsis
	8.2.2 Main GUI Screen

	8.3 SR4 Test Program Reference
	8.3.1 Synopsis
	8.3.2 Main GUI Screen

	8.4 SL2 Test Program Reference
	8.4.1 Synopsis
	8.4.2 Main GUI Screen

	8.5 Azatrax Device Map Reference
	8.5.1 Synopsis
	8.5.2 Main GUI Screen

	9 XPressNet Throttle
	9.1 Main GUI
	9.2 Programming Mode
	9.3 Open Port

	10 Generic Throttle
	10.1 Main GUI
	10.2 Programming Mode

	11 Time Table (V2) Tutorial
	11.1 Creating a new time table
	11.1.1 Creating stations
	11.1.2 Creating cabs

	11.2 Creating trains
	11.3 Printing a time table

	12 Time Table (V2) Reference
	12.1 Command Line Usage
	12.2 Layout of the Main GUI
	12.3 Creating a New Time Table
	12.3.1 Creating the station stops for a new time table
	12.3.2 Create All Cabs Dialog

	12.4 Loading an Exiting Time Table File
	12.5 Saving a Time Table File
	12.6 Adding Trains
	12.6.1 Create New Train Dialog

	12.7 Deleting Trains
	12.8 Linking and Unlinking Duplicate Stations
	12.9 Adding Station Storage Tracks
	12.10 Adding Cabs
	12.11 Handling Notes
	12.11.1 Creating New Notes and Editing Existing Notes
	12.11.2 Adding and Removing a Notes To Trains

	12.12 Printing a Time Table
	12.12.1 Print Timetable Dialog
	12.12.2 Print Configuration Dialog

	12.13 Exiting From the Program
	12.14 Select One Train Dialog
	12.15 The View Menu
	12.15.1 Trains
	12.15.2 Stations
	12.15.3 Notes

	12.16 System Configuration
	12.17 Add Cab Dialog
	12.18 Add Remove Note Dialog
	12.19 Edit Note Dialog
	12.20 Edit System Configuration
	12.21 Edit Train Dialog
	12.22 Select A Storage Track Name
	12.23 Select One Note Dialog
	12.24 Select One Station Dialog

	13 Freight Car Forwarder (V2) Tutorial
	13.1 Loading System Data
	13.2 Assigning Cars
	13.3 Running Trains
	13.4 Printing Yard and Switch Lists
	13.5 Saving the updated car data
	13.6 Generating Reports
	13.7 Other activities

	14 Freight Car Forwarder (V2) Reference
	14.1 Command Line Usage
	14.2 Layout of the Main GUI
	14.3 Opening and loading a system file.
	14.4 Loading and reloading the cars file.
	14.5 Saving the cars file.
	14.6 Managing trains and printing
	14.6.1 Controlling Yard Lists
	14.6.2 Enabling printing for all trains
	14.6.3 Disabling printing for all trains
	14.6.4 Printing a dispatcher report
	14.6.5 Listing local trains for this shift
	14.6.6 Listing manifests for this shift
	14.6.7 Listing all trains for all shifts
	14.6.8 Managing one train

	14.7 Viewing a car's information
	14.8 Editing a car's information
	14.9 Adding a new car
	14.10 Deleting an existing car
	14.11 Showing cars without assignments
	14.12 Running the car assignment procedure
	14.13 Running every train in the operating session
	14.14 Running the box move trains
	14.15 Running a single train
	14.16 Opening a Printer
	14.17 Closing the printer
	14.18 Printing yard and switch lists
	14.19 Showing cars on the screen
	14.20 Printing Reports
	14.21 Resetting Industry Statistics
	14.22 Quiting the application
	14.23 General Dialogs
	14.23.1 Control Yard Lists Dialog
	14.23.2 Enter Owner Initials Dialog
	14.23.3 Select A Train Dialog
	14.23.4 Manage One Train Dialog
	14.23.5 Open Printer Dialog
	14.23.6 Search For Cars Dialog
	14.23.7 Select A Division Dialog
	14.23.8 Select An Industry Dialog
	14.23.9 Select A Station Dialog
	14.23.10 Select Car Type

	14.24 Data files
	14.24.1 Data File Formats
	14.24.1.1 System File
	14.24.1.2 Industry File
	14.24.1.3 Trains File
	14.24.1.4 Orders File
	14.24.1.5 Owners File
	14.24.1.6 Car Types File
	14.24.1.7 Cars File
	14.24.1.8 Statistics File
	14.24.1.9 Other data files

	15 Resistor Program Reference
	16 LocoPull Program Reference
	16.1 Basis and Mathematics
	16.2 The GUI
	16.2.1 The Scale
	16.2.2 Locomotive Information
	16.2.3 Consist Information
	16.2.4 Zero-grade capacity
	16.2.5 Grade information
	16.2.6 Curve information
	16.2.7 Capacity and Grade plus Curve

	17 Camera Programs Reference
	18 Dispatcher Tutorial
	18.1 A `¨Simple Mode`¨ CTC Panel
	18.2 A LCC Example

	19 Dispatcher Reference
	19.1 Main GUI Screen
	19.1.1 Track work Node Graphs
	19.1.1.1 Loading a Layout
	19.1.1.2 Finding Nodes
	19.1.1.3 Printing Node Graphs

	19.1.2 Creating a new CTC Panel
	19.1.3 Opening an existing CTC Panel

	19.2 Configurable Options
	19.3 CTC Panel Windows
	19.3.1 Menu items available when editing a CTC Panel Window
	19.3.1.1 File menu
	19.3.1.2 Edit menu
	19.3.1.3 View menu
	19.3.1.4 Panel menu
	19.3.1.5 C/Mri menu
	19.3.1.6 Azatrax menu

	19.4 CTC Panel Code
	19.4.1 Wrapped CTC Panel Programs
	19.4.2 Generated Code
	19.4.2.1 Configuring CTC Panel Windows
	19.4.2.2 Adding, Editing, and deleting elements to CTC Panel Windows
	19.4.2.3 Adding, Editing, and deleting C/Mri nodes to CTC Pane Windows
	19.4.2.4 Adding, Editing, and deleting Azatrax nodes to CTC Panel Windows

	19.4.3 User Code
	19.4.3.1 Insert-able Modules
	19.4.3.2 The Main Loop

	19.5 Add CMRI Node Dialog
	19.6 Select CMRI Node Dialog
	19.7 Add Azatrax Node Dialog
	19.8 Select Azatrax Node Dialog
	19.9 Add Panel Object Dialog
	19.10 Select Panel Object Dialog
	19.11 Edit User Code Dialog
	19.12 Find Node Dialog
	19.13 Print Dialog
	19.14 Select Panel Dialog
	19.15 Using the Dispatcher program with layouts designed in XtrackCAD
	19.15.1 LCC event id format.
	19.15.2 XTrackCAD `¨script`¨ formats.
	19.15.3 Layout Controls Dialog

	19.16 Insertable Module Library
	19.16.1 Track Work type
	19.16.1.1 Blocks::Block
	19.16.1.2 Switches::Switch

	19.16.2 Switch Plate type
	19.16.3 Signal types
	19.16.4 Signal Plate type
	19.16.5 Control Point type
	19.16.6 Radio Group type

	20 Dispatcher Examples
	20.1 Example 1: Simple siding on single track mainline
	20.2 Example 2: Mainline with an industrial siding
	20.3 Example 3: double track crossover
	20.4 Example 4: From Chapter 9 of C/MRI User's Manual V3.0

	21 SatelliteDaemon
	21.1 SYNOPSIS
	21.2 DESCRIPTION
	21.3 OPTIONS
	21.4 PROTOCOL
	21.5 AUTHOR

	22 raildriverd
	22.1 SYNOPSIS
	22.2 DESCRIPTION
	22.3 OPTIONS
	22.4 PARAMETERS
	22.5 Hotplugging scripts and setup.
	22.6 AUTHOR

	23 OpenLCB Tcp/Ip Hub Server
	23.1 SYNOPSIS
	23.2 DESCRIPTION
	23.3 PARAMETERS
	23.4 OPTIONS
	23.5 AUTHOR

	24 OpenLCB GridConnect Tcp/Ip Hub Server
	24.1 SYNOPSIS
	24.2 DESCRIPTION
	24.3 PARAMETERS
	24.4 OPTIONS
	24.5 AUTHOR

	25 OpenLCB Router Daemon (Server)
	25.1 SYNOPSIS
	25.2 DESCRIPTION
	25.3 PARAMETERS
	25.4 OPTIONS
	25.5 AUTHOR

	26 OpenLCB MRD2 Node
	26.1 SYNOPSIS
	26.2 DESCRIPTION
	26.3 PARAMETERS
	26.4 OPTIONS
	26.5 CONFIGURATION
	26.6 AUTHOR

	27 OpenLCB PiGPIO node
	27.1 SYNOPSIS
	27.2 DESCRIPTION
	27.3 PARAMETERS
	27.4 OPTIONS
	27.5 CONFIGURATION
	27.6 AUTHOR

	28 OpenLCB PiMCP23008 node
	28.1 SYNOPSIS
	28.2 DESCRIPTION
	28.3 PARAMETERS
	28.4 OPTIONS
	28.5 CONFIGURATION
	28.6 AUTHOR

	29 OpenLCB PiMCP23017 node
	29.1 SYNOPSIS
	29.2 DESCRIPTION
	29.3 PARAMETERS
	29.4 OPTIONS
	29.5 CONFIGURATION
	29.6 AUTHOR

	30 OpenLCB PiMCP23017 as signal driver node
	30.1 SYNOPSIS
	30.2 DESCRIPTION
	30.3 PARAMETERS
	30.4 OPTIONS
	30.5 CONFIGURATION
	30.6 AUTHOR

	31 OpenLCB program for the MCP23017-based quad signal head HAT
	31.1 SYNOPSIS
	31.2 DESCRIPTION
	31.3 PARAMETERS
	31.4 OPTIONS
	31.5 CONFIGURATION
	31.6 AUTHOR

	32 OpenLCB PiSPIMax7221 node
	32.1 SYNOPSIS
	32.2 DESCRIPTION
	32.3 PARAMETERS
	32.4 OPTIONS
	32.5 CONFIGURATION
	32.6 AUTHOR

	33 OpenLCB Virtual Track Circuits node
	33.1 SYNOPSIS
	33.2 DESCRIPTION
	33.2.1 Code rate and aspect.

	33.3 PARAMETERS
	33.4 OPTIONS
	33.5 CONFIGURATION
	33.6 AUTHOR

	34 OpenLCB Logic node
	34.1 SYNOPSIS
	34.2 DESCRIPTION
	34.3 PARAMETERS
	34.4 OPTIONS
	34.5 CONFIGURATION
	34.6 AUTHOR

	35 OpenLCB Acela Node
	35.1 SYNOPSIS
	35.2 DESCRIPTION
	35.3 PARAMETERS
	35.4 OPTIONS
	35.5 CONFIGURATION
	35.6 AUTHOR

	36 OpenLCB CMRI Node
	36.1 SYNOPSIS
	36.2 DESCRIPTION
	36.3 PARAMETERS
	36.4 OPTIONS
	36.5 CONFIGURATION
	36.6 AUTHOR

	37 JMRI Tables to LayoutDB converter
	37.1 SYNOPSIS
	37.2 DESCRIPTION
	37.3 PARAMETERS
	37.4 OPTIONS
	37.5 AUTHOR

	38 LayoutDB to JMRI Tables converter
	38.1 SYNOPSIS
	38.2 DESCRIPTION
	38.3 PARAMETERS
	38.4 OPTIONS
	38.5 AUTHOR

	39 Offline LCC Node Editor
	39.1 SYNOPSIS
	39.2 DESCRIPTION
	39.3 PARAMETERS
	39.4 OPTIONS
	39.4.1 X11 Resource Options
	39.4.2 Other options

	39.5 AUTHOR

	40 Help
	41 Version
	42 GNU GENERAL PUBLIC LICENSE
	Bibliography
	Index

