Model Railroad System
A collection of utilities for Model Railroaders
Application Note 02: Two Siding Oval N

Robert Heller
Deepwoods Software
Wendell, MA, USA

January 22, 2015

This documentation was prepared with I&TEX.
This document describes version 2 of the Model Railroad System package.

Copyright ©1994,1995,2002-2013 by Robert Heller D/B/A Deepwoods Software

All rights reserved. Permission is granted to copy this document in electronic
form only, so long as it is with the software it documents.

The author, Robert Heller, may be contacted electronically (E-Mail) via
heller@deepsoft.com.

Deepwoods Software’s web site URL: http://www.deepsoft.com/.
ApplicationNote02.tex 1850 2015-01-22 14:53:50Z heller

CONTENTS CONTENTS

Contents

1 Introduction 1

2 The Layout 3

3 Auto Dispatcher 7
3.1 DispatchingLogic. 7
3.2 Thecode, annotated. 8

Bibliography 17

Index 19

ApplicationNote02.tex 1 Rev: 1850, January 22, 2015

ii

CONTENTS

LISTINGS LISTINGS

Listings

3.1 Dispatching logic, implemented in Tcl ANO2.tcl 9

ApplicationNote02.tex 1ii Rev: 1850, January 22, 2015

v

LISTINGS

LIST OF FIGURES LIST OF FIGURES

List of Figures

2.1 TwoSidingOvalN 3
2.2 Two Siding Oval N, North West Switch with Signal and Sensor
locations. L 4

2.3 Two Siding Oval N, North West Signal and Sensor detail, with gaps. 4
2.4 Two Siding Oval N, East Sensor connections for MRD2-U modules. 5

3.1 Schematic of a bi-direction single track segment 7
3.2 Schematic of thelayout 8

ApplicationNote02.tex \% Rev: 1850, January 22, 2015

vi

LIST OF FIGURES

LIST OF TABLES LIST OF TABLES

List of Tables

ApplicationNote02.tex vii Rev: 1850, January 22, 2015

viii LIST OF TABLES

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This application note presents the software for a 2’ by 6’ N scale continious run-
ning oval layout. This module is a table top module and features a single track oval
with a pair of passing sidings. It is set up to run two trains in opposite directions
and does so in a fully automated way using computer control, using USB con-
nected IR sensors and control modules from Azatrax. The layout illustrates how
to automate signaling and control of trains moving in opposing directions through
a single track main line. The ideas presented in this Application Note could be
adapted for more realistic layouts and can be incorporated into a CTC system,
with automated diversions into passing sidings. This layout, as is, could also be
used as a unattended educational museum layout, demostrating how bi-directional
traffic is handled on a single track mainline.

This application note expands on information contained in the Programming
Guides[2], User Manual[3], and Internals Manual[1]. The Dispatcher program,
described in the User Manual, was used to create and maintain the dispatcher
code described in Chapter 3. This code makes use of the Tcl API for the Aza-
trax MRD2-U and SR4 devices, which is described in the Internals Manual and
Programming Guides. The layout uses some circuits described by Rob Paisley[4].

ApplicationNote02.tex 1 Rev: 1850, January 22, 2015

CHAPTER 1. INTRODUCTION

CHAPTER 2. THE LAYOUT

Chapter 2
The Layout

R — = = ——
s — =
XTrkCacz Two Siding Oval Fri 12 Sep 21
PrintScale 8:1 Room 80.000 x 48.000 Model Scale N File TwoSidingOval~

Figure 2.1: Two Siding Oval N

The complete layout is shown in Figure 2.1. This is a basic oval with a pair
of passing sidings, one on each straight section. The turnouts at the ends of the
passing sidings will be controled by the computer to allow continious running of
two trains going in opposite directions. If necessary, a train will be held at the end
of its siding until the other train clears the single track segment. The computer
will use Azatrax MRD2-U IR sensors to sense when the single track segments are
occupied and will use Azatrax SR4-U modules to control the direction of travel
on the single track segments as well as energizing the twin-coil switch machines
to throw the turnouts as needed. The trains will be plain DC powered and the rails
will have gaps to isolate the various power sections. The single track segments
will be powered from computer controlled reversing relays since these segments

ApplicationNote02.tex 3 Rev: 1850, January 22, 2015

4 CHAPTER 2. THE LAYOUT

will be operating in alternating directions. The sidings will be fixed polarity wired.

@a5§nsor 1

] — | | ——
/ I [
— 3

Sensor 2

Figure 2.2: Two Siding Oval N, North West Switch with Signal and Sensor loca-
tions.

@HSﬁnsor 1
...................... _.q

i !..
Sensor 2

Figure 2.3: Two Siding Oval N, North West Signal and Sensor detail, with gaps.

Figures 2.2 and 2.3 show the detail of the North West Switch with the signal
and sensor locations. This is typical for each corner. The inner siding is clockwise
running and the outer siding is counter clockwise running!. There are eight sensor
locations, two for each MRD2-U module. Figure 2.4 shows how the East end sen-
sors are connected. The West end follows a similar pattern. Sensor one for each
MRD2-U is the sensor at the entrance end of each logical route through the single
track main lines, located at the signal (just before the turnout) and sensor two for
that MRD2-U is the sensor at the exit of that logical route through the single track
main line (just after the turnout). The end curves handle bi-direction traffic and
each MRD2-U device detects trains going in a specific direction. If the software

I'This happens to correspond to “right hand” running.

!

Sensor 2i

EE *

rack Power
- Track Power . .
= :
s Sensor 1/ [and
Track Power

MRD2-U

r

|_’ + k Sensor \2,
= L
| A
o e
. Track Power Sensor 1

Figure 2.4: Two Siding Oval N, East Sensor connections for MRD2-U modules.

6 CHAPTER 2. THE LAYOUT

determines that the route is occupied by a train going in one direction, it will hold
the train going in the other direction until the first train clears the exit sensor. If
the entrance sensor detects a train (which will be stopped at the sensor/signal), the
software will change the turnout alignment and flip the direction of travel and will

hold opposing traffic.

CHAPTER 3. AUTO DISPATCHER

Chapter 3

Auto Dispatcher

The software for this layout implements a simple automatic dispatching system.
Most of the time the trains are on a double track “main line” and require no dis-
patching, since each main line track segment is operated in a single direction with
only one train. At the either end of the layout is a segment of bi-directional sin-
gle track. Using Azatrax MRD2-U’s the computer senses trains traveling through
these segments of bi-directional single track and uses Azatrax SR4-Us to con-
trol the turnouts, signals, and the polarity of the power feed to the segments of
bi-directional single track, allowing only one train access at a time.

Each segment of bi-directional single track, with associated turnouts use two
MRD2-U’s (one for each logical direction) to sense trains.

3.1 Dispatching Logic

left2 — — Left 1
_Eﬁ-
____Je | . | |

Right 1 Right 2

Figure 3.1: Schematic of a bi-direction single track segment

A schematic track diagram of a bi-direction single track segment is shown
in Figure 3.1. There are four sensor locations, shown as white dots and labeled
Left 1, Left 2, Right 1, and Right 2. These sensors are connected to
two MRD2-U, Left and Right. The sensors are connected to the MRD2-U
such that a given MRD2-U’s “sense 17 is the entry and “sense 2” is the exit.

ApplicationNote02.tex 7 Rev: 1850, January 22, 2015

8 CHAPTER 3. AUTO DISPATCHER

Each MRD2-U device thus senses a train going in a specific direction through the
single track segment. There is a gap (eg with insulating rail joiners) between both
mainline tracks and the single track segment. There is an additional gap about
the length of the engine past the entrance sensor. This short segment of track is
powered via diodes from the rest of the single track segment. The diodes enforce
the correct direction of travel for the entering train. The single track segment
is considered occupied by a train traveling from right to left if either of the left
sensors are active (the train is entering or leaving) or if the left sensor 1 latch is set
(the train is between sensors). The single track segment is considered occupied
by a train traveling from left to right if either of the right sensors are active (the
train is entering or leaving) or if the right sensor 1 latch is set (the train is between
sensors). When a train arrives at a sensor 1 position (either Left 1 or Right
1), the computer checks to see if the single track segment is occupied by a train
going in the opposite direction.

3.2 The code, annotated.

AN /
in 2n
/7 AS
1s 2s

Figure 3.2: Schematic of the layout

Listing 3.1 contains the user code section of the dispatcher program for this
layout. The displayed schematic of the layout is shown in Figure 3.2.

The code starts with a procedure named CurveOccupancy, starting at line
268 of the source file (ANO2.tc1l). This procedure is used by the single track
curved sections at the east and west ends of the layout to check for occupancy. It
uses both MRD2-U units to test for either a clockwise or counter-clockwise train
occupying the curved section (including the turnouts at the ends).

11

16

3.2. THE CODE, ANNOTATED. 9

The next section, starting at line 314, defines a SNIT type to handle the logic
for occupancy checking for the four straight sections. Four instances of this type
are created, one for each of the straight sections, starting at line 431.

Starting at line 446 is a pair of blocks of code to initialize the two SR4 devices
to a known powered up state.

At line 460 the main loop starts. The main loop starts by reading in the state
data of the six Azatrax devices. This is done at lines 463—473. Then all of the
trackwork is “invoked”, which runs the occupancy scripts for each piece of track-
work and thus determines whether or not the various blocks are occupied. This is
done at lines 475-492.

Next come 4 blocks of code, starting at line 494 that implement the dispatcher
logic, which is to check for a train arriving at an entry detector and then testing
to see if there is an opposing movement in the single track block. If the block is
clear, the turnout is thrown in favor of the entering train and the power reversing
relay is set or unset to also favor the entering train. There is a block of code for
each entrance sensor. The four blocks of code are at lines 507-523 (West end
clockwise block), 525-541 (West end counter-clockwise block), 546-562 (East
end clockwise block), and 564-580 (East end counter-clockwise block).

At the bottom of the main loop is a call to the update, which causes the GUI
to update to reflect the state of the layout.

Listing 3.1: Dispatching logic, implemented in Tcl AN02.tcl

proc CurveOccupancy {CW_Sensor CCW_Sensor} {

Check for curve occupancy.

First the clockwise sensor is checked and then the counter—

clockwise sensor is checked. The logic is:

Sense_I This is at the entrance to the curve, just before the
turnout. If this sensor is active, then a train
is presently entering.

Latch_1 This is the latched state of sense 1. If it is set,
then the train has cleared sense I, but has not
vet covered sense 2, this means that the train is
in the curve between the sensors.

Sense_2 This is the sensor at the exit from the curve. If this
sensor is active, then a train is presently
exiting the curve. When this sensor is activated,
the latch for sensor 1 is cleared.

If all of the above are clear (return false), then the train
has cleared the exit sensor and the curve is not occupied.

FoH W R H W W W W W W K W H R

21

26

31

36

41

46

51

56

61

10 CHAPTER 3. AUTO DISPATCHER
If any of the above are set (return true), then there is a

train occupying the block.

#

Both the clockwise and counter—clockwise sensors are checked,
since a tain going in either direction could be occupying the
curve.

#

This procedure is used as the Occupancy Script for the curved
sections of the trackwork, including the turnouts.

#

Parameters:

CW_Sensor The Clockwise sensor, a MRD object.

CCW_Sensor The Counter—Clockwise sensor, a MRD object.

#

if {[$CW_Sensor Sense_1] ||
[$CW _Sensor Latch_1] ||
[$CW _Sensor Sense_2]} {
return yes
} elseif {[$CCW_Sensor Sense_1] ||
[$CCW _Sensor Latch_1] |]
[$CCW_Sensor Sense_-2]1} {
return yes
1 else {
return no
}
}

snit::type StraightOccupancy {

Object to implement occupancy testing on the straight
sections. This object is used to check occupancy on the
four straight sections.

Options:

—enter_sense Sensor at the entrance to the straight section.
This will be a sense 2, so only Sense_2 and
Latch_2 are checked.

—exit_sense Sensor at the exit of the straight section.
This will be a sense 1, so only Sense_l is
checked.

A state variable is used to keep track of possible states:
exited, entering, entered, exiting, and default (unknown).
Each state determines which sensors or their latches are
checked and determine the next state.

HHoH o O W W W P W W WP W HHRH™

66

71

76

81

86

91

96

101

106

3.2. THE CODE, ANNOTATED. 11

FHoH W KRR

Four of these objects will be created and used in the
Occupancy scripts of each of the four straight senctions.
The occupiedP method will be called to compute the occupancy
state.

option —enter_sense —readonly yes —default {}
option —exit_sense —readonly yes —default {}
variable state unknown
State variable.
constructor {args} {
The constructor just processes the object options.
$self configurelist $args
}
method occupiedP {} {
Method to check for occupancy. The state variable is
checked and depending on its value, the sensors or latches
are checked to determine the possible progress of a train
through the straight section.
#
switch $state {
exited {
A train has exited. Has a train reached the entry
sensor?
if {[$options(—enter_sense) Sense 2]} {
Yes, save the state.
set state entering
Block is now occupied.
set occupied yes
} else {
No, block is clear.
set occupied no

}
}

entering {
A train was entering. Has it completly entered yet?
if {[S$options(—enter_sense) Latch_2]} {
Yes. The train is now fully in the block.
set state entered
}
The block is occupied.
set occupied yes
}
entered {
A train has completly entered. Is it leaving yet?

111

116

121

126

131

136

141

146

151

12

CHAPTER 3. AUTO DISPATCHER

if {[$options(—exit_sense) Sense_1]} {

}
#

Yes, it is now leaving.
set state exiting

The block is occupied.

set occupied yes

}

exiting {
A train is exiting. Has it completely left yet?
if {[$options(—exit_sense) Latch_1]} {

}

}

Yes, it has now left.

set state exited

The block is no longer occupied.

set occupied no

else {

No, the train has not completely left, so the block
is still occupied.

set occupied yes

}

default {
Unknown state. Check each possible sensor and
determine where the train might be.

if {[$options(—enter_sense) Sense_2]} {

}

}

}

}

Entry sensor is covered: a train is entering and the
block is occupied.

set state entering

set occupied yes

elseif {[S$options(—enter_sense) Latch_ 2]} {

Entry sensor was covered, but isn’t anymore: a train
has fully entered and the block is occupied.

set state entered

set occupied yes

elseif {[S$options(—exit_sense) Sense_1]} {

Exit sensor is covered: the train is exiting and the
block is occupied.

set state exiting

set occupied yes

elseif {[S$options(—exit_sense) Latch_1]1} {

Exit sensor was covered, but isn’t anymore: the train
has fully exited and the block is no longer occupied.
set state exited

set occupied no

else {

No sensor state was met. Presume that the block is

156

161

166

171

176

181

186

191

196

3.2. THE CODE, ANNOTATED.

not

occupied.

set occupied no

}
}
}

return $occupied

}
}

Four occupancy detection objects,

straight
StraightOccupancy

StraightOccupancy

StraightOccupancy

StraightOccupancy

Initialize both

West end.

sections.

create SouthT1_Occ
—enter_sense
—exit_sense
create SouthT2_Occ
—enter_sense
—exit_sense
create NorthT1_Occ
—enter_sense
—eXxit_sense
create NorthT2_Occ
—enter_sense
—exit_sense

Turnout states and

global WestTurnoutState

WestControl

PulseRelays 0 1
WestControl RelaysOff 00

004
10

set WestTurnoutState normal

East end.

global EastTurnoutState

EastControl PulseRelays 0 1
EastControl RelaysOff 00

004
10

set EastTurnoutState normal

Main Loop Start

one for each

\

WestCounterClockwise \

EastCounterClockwise

\
EastClockwise \

WestClockwise

\

EastCounterClockwise \

WestCounterClockwise

\
WestClockwise \

EastClockwise

both reversing relays.

The main loop consistes ofthree sections

while {true} {

Read all AZATRAX
the

devices to

FH* I I

state data:

read all
sensor memory buffer.
used to check occupicency and to determine if it
to throw turnouts and relays.

This

of the four

sensors from the
data will be
needful

13

201

206

211

216

221

226

231

236

241

CHAPTER 3. AUTO DISPATCHER

WestControl GetStateData
EastClockwise GetStateData
EastCounterClockwise GetStateData
EastControl GetStateData
WestClockwise GetStateData
WestCounterClockwise GetStateData

Invoke all trackwork and get occupicency. Occupicency is

computed from the MRD sensor data loaded above. Each piece
of trackwork contains an occupicency script which checks the
sense data and determines if the piece of trackwork is
occupied.

H*+ H* H*

MainWindow ctcpanel invoke SouthTl
MainWindow ctcpanel invoke SouthT2
MainWindow ctcpanel invoke SEI
MainWindow ctcpanel invoke Switchln
MainWindow ctcpanel invoke SWI
MainWindow ctcpanel invoke Switchls
MainWindow ctcpanel invoke NorthTl
MainWindow ctcpanel invoke NorthT2
MainWindow ctcpanel invoke Switch2n
MainWindow ctcpanel invoke NEI
MainWindow ctcpanel invoke NWI
MainWindow ctcpanel invoke Switch2s

Implement dispatcher logic: check for train arrival at the
start of a single track section, then check for a possible
opposing movement. If there is no opposing movement, set the
turnout and reversing relay to favor the newly arrived
train.

There are four blocks, two for each of two ends. Each end
has a clockwise and a counter—clockwise block.

FH o o oH oH H H I

West end movements. A clockwise and then counter clockwise
block.

West end clockwise block.

Has a clockwise train arrived at the west end single track
segment? If WestClockwise’s Sense_1 is covered,

WestCounterClockwise sensors are checked to see if there is
an opposing movement.

246

251

256

261

266

271

276

281

286

3.2. THE CODE, ANNOTATED.

15

if {[WestClockwise Sense_1]} {
Check for opposing movement
if {![WestCounterClockwise Sense_1] &&
' WestCounterClockwise Sense_2] &&
![WestCounterClockwise Latch_1]1} {
single track segment is clear
Throw turnouts In and 1s (reversed).
WestControl PulseRelays 1 0 0 0 4
WestControl RelaysOn 001 0;,# Set relay.
set WestTurnoutState reverse

}
}

West end counter—clockwise block.
Has a counterclockwise train arrived at the west end single
track segment? If WestCounterClockwise’s Sense_-l1 is covered,
WestClockwise sensors are checked to see if there is an
opposing movement.
if {[WestCounterClockwise Sense_1]} {
Check for opposing movement
if {![WestClockwise Sense_1] &&
' WestClockwise Sense_2] &&
'[WestClockwise Latch_1]1} {
single track segment is clear
Throw turnouts In and 1s (normal).
WestControl PulseRelays 0 1 0 0 4
WestControl RelaysOff 0 01 0,# Unset relay.
set WestTurnoutState normal

}
}

East end movements: just like the west end, a clockwise
block and then a counter clockwise block.

East end clockwise block.
Has a clockwise train arrived at the east end single track
segment? If EastClockwise’s Sense_1 is covered,
EastCounterClockwise sensors are checked to see if there
is an opposing movement.
if {[EastClockwise Sense_1]} {
Check for opposing movement
if {![EastCounterClockwise Sense_l] &&
![EastCounterClockwise Sense_2] &&
'[EastCounterClockwise Latch_1]} {
single track segment is clear

291

296

301

306

311

316

16

}

CHAPTER 3. AUTO DISPATCHER

Throw turnouts 2n and 2s (normal).
EastControl PulseRelays 0 1 0 0 4
EastControl RelaysOff 0 01 0,# Unset relay.
set EastTurnoutState normal
}
}

East end counter—clockwise block.
Has a counterclockwise train arrived at the east end single
track segment? If EastCounterClockwise’s Sense_l is covered,
EastClockwise sensors are checked to see if there is an
opposing movement.
if {[EastCounterClockwise Sense_1]} {
Check for opposing movement
if {![EastClockwise Sense_1] &&
[EastClockwise Sense_2] &&
![EastClockwise Latch_1]} {
single track segment is clear
Throw turnouts 2n and 2s (reverse).
EastControl PulseRelays 1 0 0 0 4
EastControl RelaysOn 001 0,;,# Set relay.
set EastTurnoutState reverse

update;# Update display

Main Loop End

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] Robert Heller. Model Railroad System A collection of utilities for Model Rail-
roaders, Internals, 2007-2013.

[2] Robert Heller. Model Railroad System A collection of utilities for Model Rail-
roaders, Programming Guides, 2007-2013.

[3] Robert Heller. Model Railroad System A collection of utilities for Model Rail-
roaders, User Manual, 2007-2013.

[4] Rob Paisley. Model railroad & misc. electronics. On the web at the URL:
http://home.cogeco.ca/~rpaisley4/CircuitIndex.html,
1999.

ApplicationNote02.tex 17 Rev: 1850, January 22, 2015

18

BIBLIOGRAPHY

